NASA spacecraft is about to probe one of Earth's scariest threats - the sun - Canadanewsmedia
Connect with us

Science

NASA spacecraft is about to probe one of Earth's scariest threats – the sun

Published

on


The source of all light and life on Earth is also the source of one of its biggest natural threats: space weather. The sun’s atmosphere regularly erupts with fast-moving flashes of protons and explosions of energetic particles that can hit Earth within minutes and disrupt radio communication, interfere with GPS and fry the electric grid. A “worst case scenario” space weather event could cause more damage than Hurricanes Katrina, Harvey and Sandy combined.

“It sounds like science fiction,” said National Oceanic and Atmospheric Administration meteorologist William Murtagh, who heads the Space Weather Forecasting Center. “But it’s something that’s not only possible but very likely to happen in the not-too-distant future.”

article continues below

Scientists have long struggled to understand and predict space weather events, because the ferocious environment around the sun makes them difficult to witness as they form.

But as early as Saturday morning – if all goes according to plan – Murtagh and scores of other researchers will watch as NASA’s newest spacecraft, the Parker Solar Probe, embarks on a mission to get closer to the sun than any human-made object has before.

It’s the culmination of a half-century effort to understand our star, Murtagh says, and it may help us prepare for the hazards the sun may throw at us in the future.

Part of the sun erupted on Sept. 1, 1859. English astronomer Richard Carrington noticed a brilliant white solar flare on the sun, brighter than the sunspots he usually observed. Roughly a day later, a blast of charged particles – known as a coronal mass ejection, or CME – arrived at Earth, jostling the planet’s magnetic bubble. People as far south as Cuba saw the sky light up with auroras. Geomagnetic currents sent surges of electricity through copper telegraph wires, zapping operators and setting telegraph paper aflame.

If a similar event happened today, it would bring life as we know it to a halt.

The energetic particles within a coronal mass ejection can penetrate the walls of spacecraft and pose a radiation risk to astronauts and the technology they depend on. They can interfere with satellites, disrupting radio communication and GPS. And a CME hits our planet’s magnetosphere at the right angle, it can generate powerful waves of electricity within the Earth. These may then infiltrate utility grids and blow out transformers that provide electricity – like tripping a circuit on a massive scale.

The sun exploded again in July 2012, spewing material toward Earth at nearly 6 million miles per hour. This time the coronal mass ejection hit a NASA spacecraft called STEREO-A at full-blast. The spacecraft’s sensors were stressed, but they still managed to measure the solar particles, gusts of solar wind and the strength of the interplanetary magnetic field.

A year after the explosion, in a paper published in the journal Space Weather, astrophysicists examined the STEREO-A data to answer a worst-case question. “What if that coronal mass ejection had occurred 10 days earlier,” said Daniel Baker, a professor of planetary and space physics at the University of Colorado at Boulder and one of the authors of the study, “when the earth was in the line of fire?”

Their conclusion: If it had hit Earth, Baker and his colleagues wrote, there was a “very legitimate question of whether our society would still be ‘picking up the pieces.'”

In 2008, a National Academies of Sciences, Engineering and Medicine report on the economic and societal impacts of space weather came up with a worst-case estimate for an extreme geomagnetic storm: It could cost North America up to $2 trillion in the first year, and recovery would take four to 10 years.

It’s said that space weather science lags about 50 years behind terrestrial weather forecasting. Meteorologists know what conditions cause hurricanes, and they can spot the seeds of a storm brewing over the ocean long before it makes landfall.

But warning times for space weather events are often measured in minutes, Murtagh said, and there’s too much we don’t know.

“There’s a lack of understanding,” Murtagh said. “It’s science. It’s knowledge of the sun and the physical processes that are likely to produce those energetic particles. We just don’t fully understand the science yet.”

Much of our modern understanding of the sun stems from 91-year-old Eugene Parker, for whom NASA’s new probe is named.

In the mid-1950s, Parker discovered a link between two seemingly unrelated space mysteries. First, bizarrely, the corona, or atmosphere of the sun, is hotter than its surface – scientists liken the sun to a campfire that feels hotter the further one stands from the flames. And second, the dusty tails of comets always point away from the sun, as if blasted by a powerful wind.

Parker realized that the corona isn’t a static halo, but a stream of material from the sun itself. It starts slow and dense and zooms up as it escapes the sun’s gravity, eventually exceeding the speed of sound. The pointed tails of comets behave like windsocks caught in the solar wind.

The acceleration of the particles in the solar wind remains one of the “fundamental mysteries of the sun,” said Nicola Fox, a heliophysicist at the Johns Hopkins Applied Physics Laboratory and the project scientist for Parker Solar Probe. And it’s one of the keys to understanding CMEs – the extra-destructive blasts that pose so much danger to life on Earth.

After the National Academies released its sobering 2008 report, “awareness, both at government and in the public, for this hazard really came to the fore,” said a Federal Emergency Management Agency official, who agreed to speak on the record on the condition of anonymity.

Trillion-dollar space storms are a rare issue that rallies Republicans and Democrats alike. The Obama administration’s executive order 13744 created a national space weather policy in 2016. FEMA recently finished drafting a federal operations plan for space weather, which was sent to the Trump administration for approval. Congress is also considering legislation directing funds toward developing a space weather plan.

The issue is particularly pressing for the East Coast of the United States between Washington and Maine, not only because of the extensive electric infrastructure in this region. The very ground beneath our feet makes us vulnerable, Murtagh said. The 300-million-year-old igneous rock on which the Eastern Seaboard is perched doesn’t conduct electricity well. If a current strikes this rock, it will seek an easier path – like metal pipes, telephone wires and electric cables.

Eventually, the current can hit high-voltage transformers, the spine of the power grid, and overwhelms their magnetic cores.

This isn’t idle speculation. It happened, on a relatively small scale, in Canada in 1989. The sun belched out a gas cloud in early March that cut off radio signals. (At first, some observers suspected Soviet, not solar, interference.)

Electrical currents buzzed through the ground and flooded into the Hydro-Québec power plant. Six million people in Québec were without power for nine hours. Glancing effects were felt as far away as New Jersey, where the electrical surge roasted a transformer at the Salem Nuclear Power Plant.

Industry reports suggest operators would have enough time to shut down the grid before it suffered permanent damage. But others are not as optimistic.

“We’re not going to know until a real event happens whether or not that’s a true statement,” said the FEMA official, who added that power utility engineers “won’t say this publicly,” but they have been stocking up on spare transformers where they can. Installing new transformers – which would have to be built overseas – might take one or two years.

That a future solar storm will blast Earth is not a question of if, but when. In 2012, Peter Riley, who studies the sun’s corona at Predictive Science Inc., a San Diego-based company that develops computer models of the sun, published an article in Space Weather that calculated the odds of a Carrington-scale repeat. Within the next decade, he concluded, it could be about 12 percent – on par with the risk of other 100-year hazards, like massive floods.

Over the next seven years, the Parker Solar Probe will embark on a series of 24-egg shaped orbits around the sun, repeatedly swinging past Venus to re-orient itself. Each close approach will shoot it through the corona at a breathtaking 450,000 miles per hour – fast enough to get from Washington to New York in about a second. With its dust detectors, particle counters, and a telescope that can take 3-D images of the corona, the probe will measure the sun’s electric and magnetic fields, scoop particles from the solar wind for sampling, and watch as shocks travel out from the sun’s surface, through the atmosphere and into space.

“There’s no doubt in my mind that measurements from probe and our understanding is going to have a huge impact on our ability to predict space weather,” said Christina Cohen, a scientist at the California Institute of Technology’s Space Radiation Lab who studies energetic particles.

It’s a project scientists have dreamed about for roughly as long as they’ve known about the solar wind. But it took half a century to develop the necessary technology. When the spacecraft makes its first close approach in November, a carbon-composite heat shield will be all that protects the minivan-sized Parker Solar Probe from the million-mile-wide ball of hot gas.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Global warming 'pause' about to end, raise Earth's temperatures further

Published

on

By


The past four years have been the hottest on record, but new research shows the Earth was actually in a global warming "hiatus" that is about to end. And when it does, natural factors are likely to help an already warming planet get even hotter over the next four years, according to a new forecasting model.

Rising CO2 levels have caused the temperature of the planet to rise, said lead author of the Nature Communications paper, Florian Sevellec, a professor of ocean and Earth science at the University of Southampton in the United Kingdom and a scientist at France's National Centre for Scientific Research.

Records show 2017 marked the 41st consecutive year with global temperatures at least marginally above the 20th century average, with 2016 being the record-holder. And it's likely that global temperatures in 2018 will be another one for the record books.

However, Earth's natural cycles, which include events like El Nino and La Nina, can also influence global temperatures.

And while Earth seems to have been running a fever for almost a decade straight, the natural cycles have been in their "cooling" phase, Sevellec says — and that's about to shift, raising the global temperature further.

"It will be even warmer than the long-term global warming is inducing," Sevellac said. 

This cooler phase of the planet's natural variability is responsible for what is often referred to as a global warming "pause" or "hiatus." While the planet continued to warm, it seemed to plateau. 

But that had to end sometime.

John Fyfe, senior research scientist at the Canadian Centre for Climate Modelling and Analysis at Environment and Climate Change Canada, says that multiple issues were at play but mainly the natural variability of the planet.

"I'm not at all surprised by the results," Fyfe said of the new study, in which he was not involved. "And the reason for that is that we have gone down this long slowdown period primarily due to internal variability, and the expectation was that we'd come out of it."

With the Earth continuing to warm, the chances increase for events like heat waves. (Yves Herman/Reuters)

Though CO2 levels were still increasing in Earth's atmosphere, natural cycles like the El Nino Southern Oscillation (ENSO) in the Pacific Ocean were cooler than normal and offset rising global temperatures. 

But, Sevellac says, "the long-term trend was building up."

This doesn't mean, however, that we can point to a specific area and better forecast, say, heat waves. Instead, this is a global measurement. But with the Earth continuing to warm, the chances increase for these events.

And global warming doesn't mean that every location on the planet warms uniformly — there are some regions that can be colder than normal — nor does it mean that each year is hotter than the previous one. Instead, it's an overall trend that can play out within a decade or more, with the temperature of the entire planet rising over time.

Probability vs. certainty

In order to test the ability to predict future climate outcomes, the model employs a method that looks backward. In this case, it was able to predict with accuracy the climate slowdown that occurred around 1998 and onward to roughly 2014.

But it's important to note that this is a probability, not a certainty.

The model shows a higher temperature than what was predicted based just on the increased CO2: the probability is 58 per cent for global surface air temperature and 75 per cent for sea surface temperatures.

"Because we tested it over the last century, we know that we are accurate for the likelihood," Sevellac says. "But the likelihood doesn't mean it will occur … there exists a small chance of being cold."

We could already be seeing a shift: after a record-breaking El Nino year just two years ago in 2016 — which caused heat waves, coral bleaching, drought and flooding around the world — the U.S. Climate Prediction Center is forecasting a 70 per cent chance that another one is on its way this winter

There's no telling how long the cycle will last, if it does manifest: it could be five years or 10. But what's important to note, Sevellac says, is that rising CO2 is still the key player in the warming of the planet.

While the study shows that the Earth's natural variability can have an influence in the short term, Sevellac says, "I think it's also a demonstration that global warming will still be there after all this natural variability."

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Scientists Develop Lab-Made Mineral That Will Suck CO2 From The Atmosphere

Published

on

By


Magnesite sample

A dream solution is that humans could develop a way to suck as much CO2 from the atmosphere as we release, and combined with greenhouse gas emission reductions, we could slow or reverse the tide of climate change.

Scientists have found a way to rapidly create the mineral magnesite in a lab both inexpensively and potentially at scale. This could be coupled with carbon sequestration, a process in which carbon is injected and stored underground, typically in depleted oil and gas fields. Reducing the concentration of CO2 in the atmosphere can be both a result of reducing input as well as increasing output of carbon dioxide from the atmosphere.

The research was presented recently at the Goldschmidt conference in Boston by Professor Ian Power of Trent University, Ontario, Canada. Their findings outline a novel way to rapidly produce magnesite inexpensively and at room temperature, allowing for the expansion of the process to an industrial scale.

If implemented at scale, the potential for another tool of CO2 removal via magnesite becomes a possibility, removing carbon dioxide from the atmosphere and storing it long-term in the mineral magnesite.

Below is a breakdown of the potential chemical reaction by which carbon dioxide can be removed from the atmosphere to create magnesite.

CO2+ H2O→H2CO3→ H++ HCO3

Mg+2+HCO3− →MgCO3+H+

To explain the above equations, carbon dioxide from the atmosphere is injected into water, which is then dissociated to form carbonic acid. From there, elemental magnesium combines with the carbonic acid to form magnesite (MgCO3).

At this time, most carbon capture and storage options are difficult to implement at scale due to high costs and difficulties scaling. With this new method, however, the rate of magnesite formation goes from hundreds to thousands of years in nature to within 72 days in a lab and at low temperatures.

Based on previous studies, magnesite can remove about half its weight in carbon dioxide from the atmosphere. Estimates put our current CO2 emissions at about 40 billion tons per year. That would mean to remove the equivalent amount of carbon emitted per year solely through magnesite formation, 80 billion tons would have to be produced per year. It becomes increasingly apparent that this cannot be the only lever we pull in mitigating climate change.

By speeding up the process, magnesite could be a legitimate resource for removing carbon dioxide from the atmosphere. However, the research is still in an experimental phase and will need to be continually tested before it could ever be implemented at industrial scales. In addition, the process will rely on the current price of carbon and financial incentives to remove carbon from the atmosphere.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Royal Tyrrell research blows swimming dinosaur theory out of the water

Published

on

By



A model of a Spinosaurus is displayed outside the entrance at the National Geographic Society in Washington.


Pablo Martinez Monsivais / AP

New research published by the Royal Tyrrell Museum on Thursday has sunk previous claims that a swimming dinosaur once paddled the rivers of the Earth.

The paper, published in scientific journal PeerJ, uses computer modelling to conclude the Spinosaurus was not adapted to swim as previously thought.

Research published in 2014 by Nizar Ibrahim and others in the journal Science proposed the dinosaur was partly aquatic, meaning it could both swim and walk on land, a first for any dinosaur.

But using different techniques that relied on physics-based testing methods, the Royal Tyrrell Museum’s curator of dinosaurs, Donald Henderson, found that the 95-million-year-old species would not have been able to survive living in water.

Henderson created three-dimensional, digital models of Spinosaurus and other predatory dinosaurs in order to test their centres of mass buoyancy and equilibrium when immersed in water. He also tested the software using models of semi-aquatic animals such as an alligator and emperor penguin, for comparison.


Henderson’s models showed that Spinosaurus could float with its head above water. However, models of other dinosaurs demonstrated similar results.

Courtesy Royal Tyrrell Museum

His models showed the Spinosaurus would have been able to float with its head above water and breath freely, just like other dinosaurs analyzed in the study.

But unlike semi-aquatic animals like alligators, which can easily self-right themselves when tipped to the side in water, the Spinosaurus rolled over onto its side when tipped slightly. The finding implied that the dinosaur species would have easily tipped over in water, forcing it to rely on its limbs to constantly maintain an upright position.

Its centre of mass was also found to be close to its hips, between its hind legs, as opposed to the centre of the torso, which had been proposed by Ibrahim’s 2014 research.


A digital model of the centre of mass of Spinosaurus (illustrated by the black plus symbol located at the hind legs), which is similar to that of other theropods, such as Tyrannosaurus rex.

Courtesy Royal Tyrrell Museum

Henderson’s model found the Spinosaurus to be unsinkable underwater, something that would have severely limited its ability to hunt aquatic prey. This differentiates it from traits commonly demonstrated by living aquatic birds, reptiles and mammals, which can submerse themselves to pursue prey underwater.

The combination of mass close to the hips, an inability to sink underwater, and a tendency to roll onto its side unless constantly resisted by limb use, suggest that Spinosaurus was not specialized for a semi-aquatic mode of life,” the researchers stated.

“Spinosaurus may have been specialized for a shoreline or shallow water mode of life, but it would have still have been a competent terrestrial animal,” added Henderson.

shudes@postmedia.com
Twitter.com/SammyHudes

Let’s block ads! (Why?)



Source link

Continue Reading

Trending

Copyright © 2018 Canada News Media

%d bloggers like this: