When the paradise tree snake flies from one tall branch to another, its body ripples with waves like green cursive on a blank pad of blue sky.
That movement, aerial undulation, happens in each glide made by members of the Chrysopelea family, the only known limbless vertebrates capable of flight. Scientists have known this, but have yet to fully explain it.
For more than 20 years, Jake Socha, a professor in the Department of Biomedical Engineering and Mechanics at Virginia Tech, has sought to measure and model the biomechanics of snake flight and answer questions about them, like that of aerial undulation’s functional role.
For a study published by Nature Physics, Socha assembled an interdisciplinary team to develop the first continuous, anatomically-accurate 3D mathematical model of Chrysopelea paradisi in flight.
The team, which included Shane Ross, a professor in the Kevin T. Crofton Department of Aerospace and Ocean Engineering, and Isaac Yeaton, a recent mechanical engineering doctoral graduate and the paper’s lead author, developed the 3D model after measuring more than 100 live snake glides.
The model factors in frequencies of undulating waves, their direction, forces acting on the body, and mass distribution. With it, the researchers have run virtual experiments to investigate aerial undulation.
In one set of those experiments, to learn why undulation is a part of each glide, they simulated what would happen if it wasn’t — by turning it off.
When their virtual flying snake could no longer aerially undulate, its body began to tumble. The test, paired with simulated glides that kept the waves of undulation going, confirmed the team’s hypothesis: aerial undulation enhances rotational stability in flying snakes.
Questions of flight and movement fill Socha’s lab. The group has fit their work on flying snakes between studies of how frogs leap from water and skitter across it, how blood flows through insects, and how ducks land on ponds.
In part, it was important to Socha to probe undulation’s functional role in snake glides because it would be easy to assume that it didn’t really have one.
We know that snakes undulate for all kinds of reasons and in all kinds of locomotor contexts. That’s their basal program. By program, I mean their neural, muscular program? — they’re receiving specific instructions: fire this muscle now, fire that muscle, fire this muscle. It’s ancient.”
Jake Socha, Professor, Department of Biomedical Engineering and Mechanics, Virginia Tech
It goes beyond snakes. That pattern of creating undulations is an old one. It’s quite possible that a snake gets into the air, then it goes, ‘What do I do? I’m a snake. I undulate.'”
But Socha believed there was much more to it. Throughout the paradise tree snake’s flight, so many things happen at once, it’s difficult to untangle them with the naked eye. Socha described a few steps that take place with each glide ?– steps that read as intentional.
First, the snake jumps, usually by curving its body into a “J-loop” and springing up and out. As it launches, the snake reconfigures its shape, its muscles shifting to flatten its body out everywhere but the tail.
The body becomes a “morphing wing” that produces lift and drag forces when air flows over it, as it accelerates downward under gravity. Socha has examined these aerodynamic properties in multiple studies. With the flattening comes undulation, as the snake sends waves down its body.
At the outset of the study, Socha had a theory for aerial undulation he explained by comparing two types of aircraft: jumbo jets versus fighter jets. Jumbo jets are designed for stability and start to level back out on their own when perturbed, he said, whereas fighters roll out of control.
So which would the snake be?
“Is it like a big jumbo jet, or is it naturally unstable?” Socha said. “Is this undulation potentially a way of it dealing with stability?”
He believed the snake would be more like a fighter jet.
To run tests investigating undulation’s importance to stability, the team set out to develop a 3D mathematical model that could produce simulated glides. But first, they needed to measure and analyze what real snakes do when gliding.
In 2015, the researchers collected motion capture data from 131 live glides made by paradise tree snakes. They turned The Cube, a four-story black-box theater at the Moss Arts Center, into an indoor glide arena and used its 23 high-speed cameras to capture the snakes’ motion as they jumped from 27 feet up — from an oak tree branch atop a scissor lift — and glided down to an artificial tree below, or onto the surrounding soft foam padding the team set out in sheets to cushion their landings.
The cameras put out infrared light, so the snakes were marked with infrared-reflective tape on 11 to 17 points along their bodies, allowing the motion capture system to detect their changing position over time.
Finding the number of measurement points has been key to the study; in past experiments, Socha marked the snake at three points, then five, but those numbers didn’t provide enough information. The data from fewer video points only provided a coarse understanding, making for choppy and low-fidelity undulation in the resulting models.
The team found a sweet spot in 11 to 17 points, which gave high-resolution data. “With this number, we could get a smooth representation of the snake, and an accurate one,” said Socha.
The researchers went on to build the 3D model by digitizing and reproducing the snake’s motion while folding in measurements they had previously collected on mass distribution and aerodynamics. An expert in dynamic modeling, Ross guided Yeaton’s work on a continuous model by drawing inspiration from work in spacecraft motion.
He had worked with Socha to model flying snakes since 2013, and their previous models treated the snake’s body in parts — first in three parts, as a trunk, a middle, and an end, and then as a bunch of links. “This is the first one that’s continuous,” said Ross. “It’s like a ribbon. It’s the most realistic to this point.”
Related Stories
In virtual experiments, the model showed that aerial undulation not only kept the snake from tipping over during glides, but it increased the horizontal and vertical distances traveled.
Ross sees an analogy for the snake’s undulation in a frisbee’s spin: the reciprocating motion increases rotational stability and results in a better glide.
By undulating, he said, the snake is able to balance out the lift and drag forces its flattened body produces, rather than being overwhelmed by them and toppling, and it’s able to go further.
The experiments also revealed to the team details they hadn’t previously been able to visualize. They saw that the snake employed two waves when undulating: a large-amplitude horizontal wave and a newly discovered, smaller-amplitude vertical wave.
The waves went side to side and up and down at the same time, and the data showed that the vertical wave went at twice the rate of the horizontal one. “This is really, really freaky,” said Socha. These double waves have only been discovered in one other snake, a sidewinder, but its waves go at the same frequency.
“What really makes this study powerful is that we were able to dramatically advance both our understanding of glide kinematics and our ability to model the system,” said Yeaton. “Snake flight is complicated, and it’s often tricky to get the snakes to cooperate. And there are many intricacies to make the computational model accurate. But it’s satisfying to put all of the pieces together.”
“In all these years, I think I’ve seen close to a thousand glides,” said Socha. “It’s still amazing to see every time. Seeing it in person, there’s something a little different about it. It’s shocking still. What exactly is this animal doing? Being able to answer the questions I’ve had since I was a graduate student, many, many years later, is incredibly satisfying.”
Socha credits some of the elements that shaped the real and simulated glide experiments to forces out of his control. Chance led him to the indoor glide arena: a few years after the Moss Arts Center opened, Tanner Upthegrove, a media engineer for the Institute for Creativity, Arts, and Technology, or ICAT, asked him if he’d ever thought about working in the Cube.
“What’s the Cube?” he asked. When Upthegrove showed him the space, he was floored. It seemed designed for Socha’s experiments.
In some ways, it was. “Many projects at ICAT used the advanced technology of the Cube, a studio unlike any other in the world, to reveal that which could normally not be seen,” said Ben Knapp, the founding director of ICAT.
“Scientists, engineers, artists, and designers join forces here to build, create, and innovate new ways to approach the world’s grandest challenges.”
In one of the center’s featured projects, “Body, Full of Time,” media and visual artists used the space to motion capture the body movements of dancers for an immersive performance.
Trading dancers for snakes, Socha was able to make the most of the Cube’s motion capture system. The team could move cameras around, optimizing their position for the snake’s path.
They took advantage of latticework at the top of the space to position two cameras pointing down, providing an overhead view of the snake, which they’d never been able to do before.
Socha and Ross see potential for their 3D model to continue exploring snake flight. The team is planning outdoor experiments to gather motion data from longer glides. And one day, they hope to cross the boundaries of biological reality.
Right now, their virtual flying snake always glides down, like the real animal. But what if they could get it to move so that it would actually start to go up? To really fly? That ability could potentially be built into the algorithms of robotic snakes, which have exciting applications in search and rescue and disaster monitoring, Ross said.
“Snakes are just so good at moving through complex environments,” said Ross. “If you could add this new modality, it would work not only in a natural setting, but in an urban environment.”
“In some ways, Virginia Tech is a hub for bio-inspired engineering,” said Socha. “Studies like this one not only provide insight into how nature works, but lay the groundwork for design inspired by nature. Evolution is the ultimate creative tinkerer, and we’re excited to continue to discover nature’s solutions to problems like this one, extracting flight from a wiggling cylinder.”
More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.
That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.
“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”
The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.
Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.
Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.
Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.
Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.
Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.
“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”
The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.
North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.
Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”
Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.
Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.
For Dello, the “fingerprints of climate change” were clear.
“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”
Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.
It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.
On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.
They call it “Big Sam.”
The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.
It didn’t die alone.
“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.
She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”
“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.
The head alone, she said, is about the size of a baby elephant.
The discovery was a long time coming.
The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.
“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.
When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”
“It contains about 100 to 300 bones per square metre,” she said.
Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.
About a year ago, they found the second adult: Big Sam.
Bamforth said both dinosaurs are believed to have been the elders in the herd.
“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.
“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”
The genders of the two adults are unknown.
Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.
The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.
She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.
“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.
“It’s pretty exciting.”
This report by The Canadian Press was first published Sept. 25, 2024.
TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.
Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.
Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.
The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.
The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.
It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.
Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.
Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.
Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.
Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.
Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.
The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”