Connect with us


7 Things We Learned From NASA’s Wildly Successful Artemis 1 Mission



Orion’s view of the Moon on December 5, the 20th day of the mission.
Photo: NASA

NASA’s Artemis 1 mission concluded with Orion’s immaculate splashdown in the Pacific Ocean on Sunday. Seemingly a billion years—and most assuredly a few billion dollars—in the making, the mission ended far too quickly for space junkies like me. But in those short few weeks, it managed to nail all its primary objectives. Artemis 1 was strictly meant as a demonstration mission, a way for NASA to test its new SLS megarocket and Orion spacecraft.

It’s still early days, but the mission appears to have been a big success. And because NASA achieved its major goals, we can talk about what went right, what went wrong, and what the successful mission means for the future. Here are seven things we learned from Artemis 1.

1. NASA’s Artemis Moon plans are officially on track

For years, I’ve had to write about NASA’s “upcoming Artemis missions” or “pending trips to the Moon,” but with the success of Artemis 1, it’s fair to say that the space agency’s next era of exploration has officially begun. Artemis—we are officially in you.

NASA’s SLS on the launch pad at Kennedy Space Center, Florida, on November 4, 2022.
NASA’s SLS on the launch pad at Kennedy Space Center, Florida, on November 4, 2022.
Photo: NASA/Kim Shiflett

I have little doubt that NASA’s current timelines for the Artemis missions, including a crewed landing in 2025, are wholly unrealistic. The space agency’s auditor general has said as much. Anticipated launch dates will repeatedly be pushed back for various reasons, whether it be on account of overdue Moonsuits, lunar landers, or any other element required for these increasingly complex missions.

It’s doubtful that Congress will sabotage or otherwise scuttle NASA’s Artemis plans by withholding funds, but as the holder of the purse strings, it remains the chamber’s prerogative to do so. That said, China is full steam ahead on its plans to send its taikonauts to the lunar surface during the mid-2030s. The U.S. has already put humans on the Moon, but China’s space ambitions are spawning a renewed space race, with some experts saying “we’re falling behind.”

2. SLS is a beast

NASA’s Space Launch System rocket finally roared to life on November 16, sending an uncrewed Orion on its historic journey around the Moon. Blasting off with 8.8 million pounds of thrust, it’s now the most powerful operational rocket in the world and the most powerful rocket ever built. The space agency finally has its megarocket, a necessity of the Artemis program, which seeks to land humans on the Moon later this decade and place a space station, called Gateway, in lunar orbit.

SLS blasting off on November 16, 2022.
SLS blasting off on November 16, 2022.
Photo: Terry Renna (AP)

“The first launch of the Space Launch System rocket was simply eye-watering,” Mark Sarafin, Artemis mission manager, said in a November 30 statement, adding that the rocket’s performance “was off by less than 0.3 percent in all cases across the board.” The rocket program was marred by budget overruns and delays, but SLS ultimately did exactly what it was supposed to do—while dropping our jaws in the process.

3. SLS wreaks havoc to the launch pad—and the pocket books

SLS is awesome, no doubt, but it comes with certain complications.

The launch vehicle’s core stage runs on a mixture of liquid oxygen and liquid hydrogen, the same super-leaky propellant that caused major headaches during the Space Shuttle era. Kennedy Space Center ground teams battled hydrogen leaks in advance of the rocket’s inaugural launch, resulting in multiple scrubs and an impromptu cryogenic tanking test in September. The team learned that the finicky rocket requires a kinder, gentler approach to tanking, but hydrogen leaks may continue to pose a problem during future launches.

When the megarocket did finally manage to blast off, it caused significant damage at the launch pad, including new scorch marks, missing paint, battered nitrogen and helium supply lines, and fried cameras. At liftoff, the powerful shockwave also tore off the tower’s elevator doors. NASA officials downplayed the damage, saying some of it was expected. Regardless, the mobile launcher is now in the Vehicle Assembly Building undergoing repairs.

Finally, the rocket, which first emerged as an idea 12 years ago and cost $23 billion to develop, is fully expendable, meaning each SLS rocket must be built from scratch. NASA inspector general Paul Martin expects each launch of SLS to cost upwards of $4.1 billion, “a price tag that strikes us as unsustainable,” he told Congress earlier this year.

SpaceX is currently building its own megarocket, called Starship, which promises to be fully reusable and more powerful than SLS (though to be clear, and as NASA administrator Bill Nelson has stated on numerous occasions, the space agency has no intention of launching Orion with Starship). NASA’s rocket will become an anachronism the moment that Elon Musk’s rocket takes flight. So while SLS’s debut performance was exemplary, the Artemis program as a whole is far from ideal in terms of its execution.

4. Deep space is unwelcoming place for cubesats

SLS, in addition to Orion, delivered 10 cubesats to space. These secondary Artemis 1 payloads went off on their various journeys, but only six of them are functioning as intended, including Arizona State University’s LunaH-Map mission, NASA’s BioSentinel, and Japan’s EQUULEUS mission.

Artist’s impression of Lockheed Martin’s LunIR cubesat, which failed shortly after launch.
Artist’s impression of Lockheed Martin’s LunIR cubesat, which failed shortly after launch.
Image: Lockheed Martin

The same cannot be said for the other four, namely Southwest Research Institute’s CuSP (CubeSat for Solar Particles), Lockheed Martin’s LunIR, NASA’s Near-Earth Asteroid Scout (NEA Scout), and Japan’s tiny OMOTENASHI lunar lander—all of which failed shortly after launch. Each failed for different reasons, such as the inability to establish deep space communications, issues with battery power, and deficient designs. The high attrition rate served as a potent reminder: Space is hard, and deep space is even harder.

5. Orion is humanity’s most impressive spaceship yet

We’ve witnessed plenty of capable spacecraft over the years. NASA’s Apollo Command and Service Module was really cool, as was the Space Shuttle. Russia’s Soyuz continues to be super reliable, while SpaceX’s Crew Dragon is the epitome of modern spacefaring. These spaceships are all great, but NASA’s Orion is now, in my opinion, the most impressive crew-friendly vehicle ever built.

Orion and Earth, as imaged on December 3, 2022.
Orion and Earth, as imaged on December 3, 2022.
Photo: NASA

The partially reusable Orion consists of a crew module, designed by Lockheed Martin, and the expendable European Service Module, built by Airbus Defence and Space. The system performed exceptionally well during the entire Artemis 1 mission, save for some minor annoyances (which I’ll get to in just a bit). Orion traveled to the Moon, successfully entered into its target distant retrograde orbit, performed a pair of close lunar flybys, and managed to survive skip reentry and splashdown. Each and every course correction maneuver was pulled off without difficulty, with Orion using less fuel than expected.

More on this story: NASA Wants More Spacecraft for Its Upcoming Artemis Moon Missions

The uncrewed Orion clocked over 1.3 million miles during its journey, while establishing a pair of new milestone records. The spacecraft flew to a maximum distance of 268,554 miles (432,194 kilometers) from Earth—the farthest distance traveled by any crew-rated vehicle. And when it came home, Orion slammed into the atmosphere at speeds reaching Mach 32, marking the fastest return velocity in history for a passenger spacecraft. The capsule’s 16.5-foot-wide heat shield protected Orion from the 5,000-degree-Fahrenheit temperatures experienced during reentry.

The next big test for Orion will be Artemis 2, for which it will need to transport four astronauts around the Moon and back. But the upcoming Artemis missions are only the beginning, as NASA plans to use Orion for crewed trips to Mars one day.

6. Orion still needs some tweaking

Artemis 1 unfolded as planned, but that’s not to say it wasn’t without problems. Mike Sarafin, the mission manager, called these anomalies “funnies” throughout Orion’s journey, but I doubt the team found them very amusing.

During the early days of the mission, Orion’s star tracker, which assists with navigation, was “dazzled” by Orion’s thruster plumes. “The thrusters were being picked up by the star tracker because it was thrusting over the field of view of the star tracker by design,” Sarafin told reporters on November 18. “The light was hitting the plume and it was picking it up,” which confused the software. Ultimately, nothing was really wrong with the star tracker, and the team was able to move forward once the problem was recognized.

One of four solar arrays that successfully powered Orion during its 25.5-day mission.
One of four solar arrays that successfully powered Orion during its 25.5-day mission.
Photo: NASA

The scariest moment happened on November 23, the seventh day of the mission, when ground controllers temporarily and unexpectedly lost contact with the spacecraft for 47 minutes. NASA isn’t sure what caused the issue.

During the final days of the mission, one of Orion’s four limiters suddenly switched off. This limiter, which is responsible for downstream power, was successfully turned back on before the glitch was able to cause serious problems. The anomaly might be related to a similar issue experienced earlier, when a component in the service module spontaneously opened without a command. Seems as though Orion brought a gremlin along for the journey.

Lastly, one of Orion’s phased array antennas exhibited “degraded behavior” during the final days of the mission, as Sarfin told reporters on December 8. This resulted in “low performance” and some “communication problems,” but nothing that endangered the mission, he said. This issue, among others, will be scrutinized and hopefully addressed in time for Artemis 2, currently planned for 2024.

7. The Moon remains a desolate and beautiful place

Images beamed back from the lunar environment served as a reminder that the Moon, though dim and stark, remains an intriguing and visually fascinating place. Sure, the Apollo missions brought back unprecedented images of the lunar landscape, but it’s still the Moon—our Moon—a place we don’t tend to visit very often (with all due respect to NASA’s Lunar Reconnaissance Orbiter, in operation since 2009, and China’s Chang’e 4 lander Yutu-2 rover, which reached the far side in early 2019).

A high-resolution image of the Moon, as captured by Orion on December 7, 2022.
A high-resolution image of the Moon, as captured by Orion on December 7, 2022.
Photo: NASA

Artemis 1 was like visiting an old friend, though an old friend filled with craters, mountain ranges, and an assortment of other fascinating surface features. What’s more, the lunar environment is a place where we can expect the unexpected, including impossibly picturesque Earthrises illuminated by the Sun. So yes, the Moon remains a worthwhile destination, as we set our sights on the next exciting phase of human space exploration.

More: See the Best Images from the Thrilling Artemis 1 Splashdown

Source link

Continue Reading


Green comet making its closest approach to Earth in 50,000 years – Yahoo Movies Canada



A rare green comet, that has not been seen for 50,000 years, is about to make its closest pass by Earth, becoming visible in a once-in-a-lifetime opportunity.

Called C/2022 E3 (ZTF), this celestial object hails from the Oort cloud at the outermost edge of the solar system.

Its green glow is a result of ultraviolet radiation from the sun lighting up the gases surrounding the comet’s surface.


The icy ball orbits the sun once every 50,000 years, which means the last time it went past the planet was during the Stone Age – when Neanderthals roamed the Earth.

It is due to pass closest to the planet – still some 42 million kilometres away –  on Wednesday night, into the early hours of Thursday and in a very dark sky will appear as a faint smudge to those looking for it with the naked eye.

However, even if the moon is too bright for stargazers to spot the comet on Wednesday night, they might be able to catch a glimpse of it a week later when it passes Mars.

Professor Don Pollacco, from the department of physics at the University of Warwick, told the PA news agency: “Comet C/2022 E3 passes closest to Earth tonight, on 1 February.

“It has been christened the “Green Comet” as pictures show the head of the Comet to have a striking colour.

“We understand this as due to light emitted from carbon molecules ejected from the nucleus due to the increase in heat etc during its closest approach to the sun, which happened around 12 January.

“Some comets approach the sun much closer and are completely evaporated by the intense radiation.”

He added: “As the comet approaches Earth (it’s still 42 million km away, so no chance of a collision) it appears to move more quickly across the sky on a night-by-night basis.

“Tonight the comet is about halfway between the pole star and the bright star Capella, overhead about 11pm.

“However, the waxing moon will make the Comet much harder to spot. To see it you’ll need a clear sky, binoculars and a bit of luck.

“Alternately, if you wait a few days to around 10 February, the moon will be less bright and the comet will be clearer to see in the southern part of the sky, passing Mars.”

The Greenwich Royal Observatory says that from the northern hemisphere, the comet is already visible in the night sky using a telescope or some binoculars.

It adds: “Comet C/2022 E3 (ZTF) will be closest to Earth on February 1. This will also be the moment the comet appears at its brightest, and currently it is expected to reach a brightness magnitude of +6. That would mean it would be visible to the naked eye.

“It’s worth noting, however, that comets can be unpredictable, and it’s hard to say with accuracy how bright the comet will be or what it will look like ahead of time.

“The comet looks like a fuzzy green ball or smudge in the sky. This green glow is a result of UV radiation from the sun lighting up the gases streaming off of the comet’s surface.”

Advising on where the comet can be seen in the night sky, the Observatory says: “When it passes near Earth in February, the green comet will be in the constellation of Camelopardalis.

“After its closest approach, the green comet will move through Auriga and end up in Taurus mid-February.

“The comet will dim over the month as it moves away from us, and the time that it will be up in the sky during the night will get shorter and shorter.”

Adblock test (Why?)


Source link

Continue Reading


New AI algorithm helps find 8 radio signals from space



A new artificial intelligence algorithm created by a Toronto student is helping researchers search the stars for signs of life.

Peter Xiangyuan Ma, a University of Toronto undergraduate student and researcher, said he started working on the algorithm while he was in Grade 12 during the pandemic.

“I was just looking for projects and I was interested in astronomy,” he told CTV News Toronto.

The idea was to help distinguish between technological radio signals created by human technologies and signals that were potentially coming from other forms of life in space.


“What we’re looking for is signs of technology that signifies if the sender is intelligent or not. And so unsurprised to us, we keep on finding ourselves,” Ma explained. “We don’t want to be looking at our own noisy signals.”

Using this algorithm, Ma said researchers were able to discover eight new radio signals being emitted from five different stars about 30 to 90 light years away from the Earth.

These signals, Ma said, would disappear when researchers looked away from it, which rules out, for the most part, interference from a signal originating from Earth. When they returned to the area, the signal was still there.

“We’re all very suspicious and scratching our heads,” he said. “We proved that we found things that we wanted to find … now, what do we do with all these? That’s another separate issue.”

Steve Croft, Project Scientist for Breakthrough Listen on the Green Bank Telescope, the institute whose open source data was the inspiration for Ma’s algorithm, said that finding radio signals in space is like trying to find a needle in a haystack.

“You’ve got to recognize the haystack itself and make sure that you don’t throw the needle away as you’re looking at the individual pieces of hay,” Croft, who collaborated on Ma’s research, told CTV News Toronto.

Croft said algorithms being used to discover these signals have to account for multiple characteristics, including the position they are coming from in the sky and whether or not the transmission changes over time, which could indicate if it’s coming from a rotating planet or star.

“The algorithm that Peter developed has enabled us to do this more efficiently,” he said.

The challenge, Croft says, is recognizing that false positives may exist despite a signal meeting this criteria. What could be signs of extraterrestrial life may also just be a “weirdly shaped bit of a haystack,” he added.

“And so that’s why we have to go back and look again and see if the signal still there. And with these particular examples that Peter found with his algorithm, the signal was not there when we pointed the telescope back again. And so we sort of can’t say one way or another, is this genuine?”

Researchers have been searching the sky for technologically-generated signals since the 1960s, searching thousands of stars and galaxies for signs of intelligent life. The process is called “SETI,” or “the Search for Extraterrestrial Intelligence.”

But interference from our own radio signals has always proven to be a challenge. Croft says most pieces of technology have some kind of Bluetooth or wireless wave element that creates static, resulting in larger amounts of data needed to be collected.

“That’s a challenge but also computing provides the solution,” he said.

“So the computing and particularly the machine-learning algorithms gives us the power to search through this big haystack, looking for the needle of an interesting signal.”

Ma said that while we may not have found a “technosignal” just yet, we shouldn’t give up. The next step would be to employ multiple kinds of search algorithms to find more and more signals to study.

Peter Ma

While the “dream” is to find evidence of life, Ma says he is more focused on the scientific efforts of actively looking for it.

This sentiment is echoed by Croft, who said he is most fascinating in working towards answering the question of whether humans are alone in this universe.

“I don’t show up to work every day, thinking I’m going to find aliens, but I do show up for work. So you know, I’ve got sort of some optimism.”


Source link

Continue Reading


How to spot the green comet in Manitoba



Space enthusiasts in the province will get the chance to potentially see a rare green comet over the next couple of days.

The comet was discovered by astronomers in southern California last year and it was determined the last time it passed Earth was around 50,000 years ago.

Mike Jensen, the planetarium and science gallery program supervisor at the Manitoba Museum, said the time between appearances and the colour of the comet makes this unique compared to others.

“The last time it would have appeared anywhere within the region of visibility to Earth, we’re talking primitive humans walking the Earth,” said Jensen. “And then yes, its colour. Most people associate comets, they’re often referred to as ghosts of the night sky because they often have a bit of a whitish-blue appearance. This one’s got a bit of green to it. Comets are all made up of different types of material, this just happens to have a bit more of some carbon elements in it.”


Jensen notes the green tint on the comet will be subtle, comparing it to the subtle red that surrounds Mars in the night sky.

Wednesday and Thursday are the best days to see the comet as Jensen said that’s when it will be closest to Earth – 42 million kilometres away.

“That proximity to us means it does get to its best visibility for us. The added advantage is it’s also appearing sort of high up in the northern sky, which puts it amongst the circumpolar stars of our night sky. In other words, the stars that are circling around the North Star.”

Now, just because the comet is close enough to be visible doesn’t mean it will be the easiest to see in the night sky according to Jensen. He said there are a few factors that play into having a successful sighting.

First, he suggests getting out of the city and away from the lights, noting, the darker it is, the better. If people head outside city limits, Jensen recommends people dress warmly, saying comet watching in the winter is not for the “faint of heart.”

Secondly, he said even though it might be possible to see the comet with the naked eye, he still suggests bringing binoculars to improve people’s chances. He also recommends checking star maps before leaving to get the most accurate location of where the comet may be.

Lastly, even if all of that is achieved, Jensen notes people will have to battle with the light of the moon, as it is close to a full moon.

“I’m not trying to dissuade anybody from going out to see it, but certainly, there’s going to be some hurdles to overcome in order to be able to spot it on your own.”

If people don’t want to go outside to see it, he said there are plenty of resources online to find digital views.

 – With files from CTV News’ Michael Lee


Source link

Continue Reading