adplus-dvertising
Connect with us

Science

A busy signal from outer space – Space Daily

Published

 on


It beats like a busy signal – one scientists were excited to get. A new study in Nature reports the discovery of a fast radio burst (FRB) that pulses at regular intervals – every 16.35 days – from a nearby galaxy.

“Some FRBs are known to repeat, but only irregularly, with cadences ranging from seconds to days,” said Laura Newburgh, an assistant professor of physics at Yale involved in the Canadian Hydrogen Intensity Mapping Experiment (CHIME), which produced the research. “This paper is the first evidence that some FRBs repeat regularly.”

Newburgh helped build the CHIME telescope in 2017 and leads a team that calibrates it.

300x250x1

FRBs are extremely bright, fast radio emissions with more energy than what the Sun generates over many years. Researchers say their intensity indicates they are connected to highly energetic astrophysical events in their galaxy of origin, such as neutron stars or black holes, which are of great interest to scientists.

Astronomers discovered the existence of FRBs a decade ago; they are still debating what causes the signals.

But scientists at CHIME continue to search for answers. CHIME is a collaboration of 50 scientists, led by the University of British Columbia, McGill University, the University of Toronto, and the National Research Council of Canada.

The collaboration uses a radio telescope located in the mountains of British Columbia’s Okanagan Valley. The CHIME telescope has four cylindrical reflector dishes that cover an area equal to two football fields.

Earlier this year CHIME worked with astronomers in Europe to pinpoint the origin of a particular FRB emission – called FRB 180916.J0158+65 – to a galaxy located 500 million light years from Earth.

Now CHIME has determined that FRB 180916 pulses at predictable intervals more than two weeks apart.

“It tells us that the origin of at least some FRBs is astrophysically regular in nature, but on long enough time scales that they may be tied to something different than a rotating, compact object – perhaps something like an orbiting system,” said Newburgh, whose lab builds instrumentation for collecting data about the history of the cosmos.

CHIME measures roughly one FRB per day, she added. The collaboration is building a database of FRB cadences, locations, energetics, and distributions in the sky.

CHIME also will continue monitoring FRB 180916. If any observed properties of its pulses change regularly, it will provide important clues about the environment of space close to its point of origin, said the scientists.

Research paper

Related Links

by Jim Shelton for Yale News

Stellar Chemistry, The Universe And All Within It


Thanks for being there;

We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook – our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don’t have a paywall – with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.


SpaceDaily Monthly Supporter
$5+ Billed Monthly


SpaceDaily Contributor

$5 Billed Once

credit card or paypal


STELLAR CHEMISTRY
Jodrell Bank leads international effort which reveals 157 day cycle in unusual cosmic radio bursts

Manchester UK (SPX) Jun 09, 2020


An investigation into one of the current great mysteries of astronomy has come to the fore thanks to a four-year observing campaign conducted at the Jodrell Bank Observatory.

Using the long-term monitoring capabilities of the iconic Lovell Telescope, an international team led by Jodrell Bank astronomers has been studying an object known as a repeating Fast Radio Burst (FRB), which emits very short duration bright radio pulses.

Using the 32 bursts discovered during the campaign, in conjunctio … read more


Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

Science

SpaceX sends 23 Starlink satellites into low-Earth orbit

Published

 on

April 23 (UPI) — SpaceX launched 23 Starlink satellites into low-Earth orbit Tuesday evening from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.

Liftoff occurred at 6:17 EDT with a SpaceX Falcon 9 rocket sending the payload of 23 Starlink satellites into orbit.

The Falcon 9 rocket’s first-stage booster landed on an autonomous drone ship in the Atlantic Ocean after separating from the rocket’s second stage and its payload.

The entire mission was scheduled to take about an hour and 5 minutes to complete from launch to satellite deployment.

300x250x1

The mission was the ninth flight for the first-stage booster that previously completed five Starlink satellite-deployment missions and three other missions.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

NASA Celebrates As 1977’s Voyager 1 Phones Home At Last

Published

 on

Voyager 1 has finally returned usable data to NASA from outside the solar system after five months offline.

Launched in 1977 and now in its 46th year, the probe has been suffering from communication issues since November 14. The same thing also happened in 2022. However, this week, NASA said that engineers were finally able to get usable data about the health and status of its onboard engineering systems.

Slow Work

Fixing Voyager 1 has been slow work. It’s currently over 15 billion miles (24 billion kilometers) from Earth, which means a radio message takes about 22.5 hours to reach it—and the same again to receive an answer.

The problem appears to have been its flight data subsystem, one of one of the spacecraft’s three onboard computers. Its job is to package the science and engineering data before it’s sent to Earth. Since the computer chip that stores its memory and some of its code is broken, engineers had to re-insert that code into a new location.

300x250x1

Next up for engineers at NASA’s Jet Propulsion Laboratory in California is to adjust other parts of the FDS software so Voyager 1 can return to sending science data.

Beyond The ‘Heliopause’

The longest-running and most distant spacecraft in history, Voyager 1, was launched on September 5, 1977, while its twin spacecraft, Voyager 2, was launched a little earlier on August 20, 1977. Voyager 2—now 12 billion miles away and traveling more slowly—continues to operate normally.

Both are now beyond what astronomers call the heliopause—a protective bubble of particles and magnetic fields created by the sun, which is thought to represent the sun’s farthest influence. Voyager 1 got to the heliopause in 2012 and Voyager 2 in 2018.

Pale Blue Dot

Since their launch from Cape Canaveral, Florida, aboard Titan-Centaur rockets, Voyager 1 and Voyager 2 have had glittering careers. Both photographed Jupiter and Saturn in 1979 and 1980 before going their separate ways. Voyager 1 could have visited Pluto, but that was sacrificed so scientists could get images of Saturn’s moon, Titan, a maneuver that made it impossible for it to reach any other body in the solar system. Meanwhile, Voyager 2 took slingshots around the planets to also image Uranus in 1986 and Neptune in 1989—the only spacecraft ever to image the two outer planets.

On February 14, 1990, when 3.7 billion miles from Earth, Voyager 1 turned its cameras back towards the sun and took an image that included our planet as “a mote of dust suspended in a sunbeam.” Known as the “Pale Blue Dot,” it’s one of the most famous photos ever taken. It was remastered in 2019.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

NASA hears from Voyager 1, the most distant spacecraft from Earth, after months of quiet

Published

 on

 

CAPE CANAVERAL, Fla. (AP) – NASA has finally heard back from Voyager 1 again in a way that makes sense.

The most distant spacecraft from Earth stopped sending back understandable data last November. Flight controllers traced the blank communication to a bad computer chip and rearranged the spacecraft’s coding to work around the trouble.

NASA’s Jet Propulsion Laboratory in Southern California declared success after receiving good engineering updates late last week. The team is still working to restore transmission of the science data.

300x250x1

It takes 22 1/2 hours to send a signal to Voyager 1, more than 15 billion miles (24 billion kilometers) away in interstellar space. The signal travel time is double that for a round trip.

Contact was never lost, rather it was like making a phone call where you can’t hear the person on the other end, a JPL spokeswoman said Tuesday.

Launched in 1977 to study Jupiter and Saturn, Voyager 1 has been exploring interstellar space – the space between star systems – since 2012. Its twin, Voyager 2, is 12.6 billion miles (20 billion kilometers) away and still working fine.

 

728x90x4

Source link

Continue Reading

Trending