Connect with us


A super-rare meteor storm may light up the sky Monday night – The Weather Network



While it is possible that we may see nothing at all extraordinary on Monday night, there’s the chance we may see hundreds, if not thousands, of meteors streaking through the sky.

Roughly 27 years ago, in 1995, astronomers watched as a comet began to shatter. Although comet 73P/Schwassman-Wachmann 3 had been discovered some 65 years before, it had been a fairly unremarkable object for all that time. Even the meteor shower associated with it, the tau Herculids which peak at the end of May each year, barely produces any meteors at all. Since 1995, though, the comet brightened significantly as it broke into multiple fragments. This breakup also ejected a fair amount of dust and debris out around the comet.

This image from NASA’s Spitzer Space Telescope shows an infrared view of the shattered remnants of Comet 73P/Schwassman-Wachmann 3, strung out in a trail of beads along its orbit. The larger fragments can be seen to emit plumes of ice, dust and gas, which are pushed away by radiation pressure due to sunlight. (Credit: NASA)

Since then the tau Herculids have remained a fairly unimpressive meteor shower. Each year, it occurs between late May and mid-June, and peaks at the end of May. However, it usually produces so few meteors that it hasn’t been worth mentioning in any seasonal night sky observing guides.

This year is different, though.

On the night of May 30-31, 2022, astronomers believe there is a chance that Earth could pass through a concentrated cluster of debris from 73P/Schwassman-Wachmann 3. If that chance pays out, it will likely produce an outburst that rivals the major annual meteor showers, such as the Perseids or the Geminids. However, there’s also the potential that we could see thousands of bright streaks in the sky as it delivers a meteor storm!

The time to watch for this depends on where you live. Researchers with the Institute for Celestial Mechanics and Computation of Ephemerides at the Paris Observatory have shown that if an outburst occurs, it will be centred over California’s Baja Peninsula at around 10 p.m. PDT on May 30. Most of North America will be able to see it, with the exception of the Arctic and the Pacific Northwest.

For Canada, this means that the eastern half of the country has the best chance to see any outburst that may occur. The chances become more slim the farther west an observer is, due to the effects of twilight.

Meteor activity is expected to last for only a few hours, peaking around 1 a.m. EDT on Tuesday — 2:30 a.m. NDT, 2 a.m. ADT, 12 a.m. CDT, 11 p.m. CST/MDT, and 10 p.m. PDT.

tau-Herculids-outburst-Stellarium-SSutherlandLook towards the bright star Arcturus, in the southwestern sky, in the hours just after midnight, EDT, on the night of Monday, May 30 to Tuesday, May 31, 2022, for the radiant of the potential tau Herculids outburst. Credit: Stellarium/Scott Sutherland


Although we may see something truly awe-inspiring on Monday night, we shouldn’t get our hopes up too much.

“This is going to be an all or nothing event,” said Bill Cooke, of NASA’s Meteoroid Environment Office.

Meteor showers are the result of Earth passing through streams of debris left behind by comets and some asteroids as they orbit the Sun. The key word in all of that, for this story, is behind. The tiny meteoroids in the debris stream are nearly always blown off the comet or asteroid to follow along in the wake of their parent object.

In the case of this potential outburst of the tau Herculids, it all depends on debris from 73P/Schwassman-Wachmann 3 being ejected with enough force during the breakup to shoot it ahead of the comet.

The reason for this is due to the timing and relative positions of Earth, the comet’s orbit and debris stream, and the main fragments of the comet.

Normally, we see next to nothing at this time of year from the comet’s very diffuse debris stream. After the comet shattered, though, there was a lot more dust and debris located near the remaining fragments. If we could encounter some of that more concentrated debris, it would produce the outburst we’re looking for. However, the timing is off.

73P-Schwassmann-Wachmann-3-C orbit-viewer-snapshot NASA-JPL-CaltechThis orbit diagram shows the relative positions of the inner planets, the comet apparent primary fragment 73P/Schwassmann-Wachmann 3-C, and the comet’s orbit, on May 31, 2022, at 5 UTC. Credit: NASA/JPL-Caltech/Scott Sutherland

At the moment, those larger fragments of the comet are nowhere near us. They’re due to pass through our current location in space over the next few months. By then, though, Earth will be millions of kilometres away from where we are now, as the planet continues along its orbit around the Sun. So, for this outburst to happen, we need some of the debris to have shot so far ahead of the fragments that it is in our path on Monday night.

According to NASA, observations with the Spitzer Space Telescope did show that some of the debris was ejected with enough force that we should encounter it.

“This is one reason why astronomers are excited,” Lee Mohon wrote on NASA’s Watch the Skies blog.


There’s no indication yet if the outburst is actually occurring, and we’ve certainly been disappointed by previous outburst predictions. However, we are seeing some promising signs.

The Spanish Meteor Network managed to capture a tau Herculid fireball on Friday night.

Additionally, the Global Meteor Network detected its first tau Herculids, too.

The questions that remain are 1) how much debris is in our path for Monday night, and 2) exactly how fast will it be travelling when it gets swept up by Earth’s atmosphere.

If there is only a small amount of relatively slow-moving meteoroids, we likely won’t see anything. The meteor shower may still occur, but as the researchers point out, it may only be picked up by Canadian Meteor Radar.

If there’s a lot of fast-moving debris, though, with plenty of ‘sand’ and ‘gravel’ mixed in with the dust, we could see a spectacular display light up the sky.


Meteor showers are events that nearly everyone can watch. No special equipment is required. In fact, binoculars and telescopes make it harder to see meteor showers, by restricting your field of view. However, there are a few things to keep in mind so you don’t miss out on these amazing events.

The three best practices for observing the night sky are:

  • Check the weather,
  • Get away from light pollution, and
  • Be patient.

Clear skies are essential. Even a few hours of cloudy skies can ruin your chances of watching an event such as a meteor shower. So, be sure to check The Weather Network on TV, on our website, or from our app, and look for my articles on our Space News page, just to be sure that you have the most up-to-date sky forecast.

Next, you need to get away from city light pollution. If you look up into the sky from home, what do you see? The Moon, a planet or two, perhaps a few bright stars such as Vega, Betelgeuse and Procyon, as well as some passing airliners? If so, there’s too much light pollution in your area to get the most out of a meteor shower. You might catch an exceptionally bright fireball if one happens to fly past overhead, but that’s likely all you’ll see. So, to get the most out of your stargazing and meteor watching, get out of the city. The farther away you can get, the better.

Watch: What light pollution is doing to city views of the Milky Way

For most regions of Canada, getting out from under light pollution is simply a matter of driving outside of your city, town or village until a multitude of stars is visible above your head.

In some areas, especially in southern Ontario and along the St. Lawrence River, the concentration of light pollution is too high. Getting far enough outside of one city to escape its light pollution tends to put you under the light pollution dome of the next city over. The best options for getting away from light depend on your location. In southwestern Ontario and the Niagara Peninsula, the shores of Lake Erie can offer some excellent views. In the GTA and farther east, drive north and seek out the various Ontario provincial parks or Quebec provincial parks. Even if you’re confined to the parking lot after hours, these are usually excellent locations from which to watch (and you don’t run the risk of trespassing on someone’s property).

If you can’t get away, the suburbs can offer at least a slightly better view of the night sky. Here, the key is to limit the amount of direct light in your field of view. Dark backyards, sheltered from street lights by surrounding houses and trees, are your best haven. The video above provides a good example of viewing based on the concentration of light pollution in the sky. Also, check for dark sky preserves in your area.

When viewing a meteor shower, be mindful of the phase of the Moon. Meteor showers are typically at their best when viewed during the New Moon or Crescent Moon. However, a Gibbous or Full Moon can be bright enough to wash out all but the brightest meteors. Since we can’t get away from the Moon, the best option is just to time your outing right, so the Moon has already set or is low in the sky. Also, you can angle your field of view to keep the Moon out of your direct line of sight. This will reduce its impact on your night vision and allow you to spot more meteors.

Once you’ve verified you have clear skies and you’ve limited your exposure to light pollution, this is where being patient comes in.

For best viewing, your eyes need some time to adapt to the dark. Give yourself at least 20 minutes, but 30-45 minutes is best for your eyes to adjust from being exposed to bright light.

Note that this, likely more than anything else, is the one thing that causes the most disappointment when it comes to watching a meteor shower.

If you step out into your backyard from a brightly lit home and looking up for a few minutes, you might be lucky enough to catch a rare bright fireball meteor. However, it’s far more likely that you won’t see anything at all. Meteors may be streaking overhead, but it takes time for our eyes to adjust, so that we can actually pick out those brief flashes of light. Waiting for at least twenty minutes, while avoiding sources of light during that time (streetlights, car headlights and interior lights, and smartphone and tablet screens) dramatically improves your chances of avoiding disappointment.

Sometimes, avoiding your smartphone or tablet isn’t an option. In this case, set the display to reduce the amount of blue light it gives off and reduce the screen’s brightness. That way, it will have less of an impact on your night vision.

You can certainly gaze into the starry sky while you are letting your eyes adjust. You may even see a few of the brighter meteors as your eyes become accustomed to the dark.

Once you’re all set, just look straight up and enjoy the view!

Adblock test (Why?)

Source link

Continue Reading


Astronaut study reveals effects of space travel on human bones – Euronews



By Will Dunham

WASHINGTON – A study of bone loss in 17 astronauts who flew aboard the International Space Station is providing a fuller understanding of the effects of space travel on the human body and steps that can mitigate it, crucial knowledge ahead of potential ambitious future missions.

The research amassed new data on bone loss in astronauts caused by the microgravity conditions of space and the degree to which bone mineral density can be regained on Earth. It involved 14 male and three female astronauts, average age 47, whose missions ranged from four to seven months in space, with an average of about 5-1/2 months.

A year after returning to Earth, the astronauts on average exhibited 2.1% reduced bone mineral density at the tibia – one of the bones of the lower leg – and 1.3% reduced bone strength. Nine did not recover bone mineral density after the space flight, experiencing permanent loss.

“We know that astronauts lose bone on long-duration spaceflight. What’s novel about this study is that we followed astronauts for one year after their space travel to understand if and how bone recovers,” said University of Calgary professor Leigh Gabel, an exercise scientist who was the lead author of the research published this week in the journal Scientific Reports

“Astronauts experienced significant bone loss during six-month spaceflights – loss that we would expect to see in older adults over two decades on Earth, and they only recovered about half of that loss after one year back on Earth,” Gabel said.

The bone loss occurs because bones that typically would be weight-bearing on Earth do not carry weight in space. Space agencies are going to need to improve countermeasures – exercise regimes and nutrition – to help prevent bone loss, Gabel said.

“During spaceflight, fine bone structures thin, and eventually some of the bone rods disconnect from one another. Once the astronaut comes back to Earth, the remaining bone connections can thicken and strengthen, but the ones that disconnected in space can’t be rebuilt, so the astronaut’s overall bone structure permanently changes,” Gabel said.

The study’s astronauts flew on the space station in the past seven years. The study did not give their nationalities but they were from the U.S. space agency NASA, Canadian Space Agency, European Space Agency and Japan Aerospace Exploration Agency.

Space travel poses various challenges to the human body – key concerns for space agencies as they plan new explorations. For instance, NASA is aiming to send astronauts back to the moon, a mission now planned for 2025 at the earliest. That could be a prelude to future astronaut missions to Mars or a longer-term presence on the lunar surface.

“Microgravity affects a lot of body systems, muscle and bone being among them,” Gabel said.

“The cardiovascular system also experiences many changes. Without gravity pulling blood towards our feet, astronauts experience a fluid shift that causes more blood to pool in the upper body. This can affect the cardiovascular system and vision.

“Radiation is also a large health concern for astronauts as the further they travel from Earth the greater exposure to the sun’s radiation and increased cancer risk,” Gabel said.

The study showed that longer space missions resulted both in more bone loss and a lower likelihood of recovering bone afterward. In-flight exercise – resistance training on the space station – proved important for preventing muscle and bone loss. Astronauts who performed more deadlifts compared to what they usually did on Earth were found to be more likely to recover bone after the mission.

“There is a lot we still do not know regarding how microgravity affects human health, particularly on space missions longer than six months, and on the long-term health consequences,” Gabel said. “We really hope that bone loss eventually plateaus on longer missions, that people will stop losing bone, but we don’t know.”

Adblock test (Why?)

Source link

Continue Reading


Understanding Plants Is Key to Finding a Cure for Cancer – SciTechDaily



The scientists state that if they can understand unchecked plant growth, they believe they can find a cure for cancer.

If scientists can fully understand plant growth, they might be able to find a cancer cure

In order to increase agricultural yields, it is important to understand how plants process light. Plants use light to determine when to grow and bloom. Plants find light using proteins called photoreceptors. However, understanding plants have impacts in fields other than agriculture.  Ullas Pedmale, an assistant professor at Cold Spring Harbor Laboratory (CSHL), and his colleagues have discovered how the proteins UBP12 and UBP13 regulate the activity of a CRY2 photoreceptor. Their finding could make new growth-control strategies apparent, with potential implications well beyond agriculture.

There are CRY photoreceptors in both plants and people. They are connected to a number of conditions including diabetes, cancer, and several brain disorders.  CRY2 helps in regulating growth in both people and plants. Uncontrolled development in plants reduces their viability, whereas it causes cancer in humans. “If we understand growth,” Pedmale says, “we can cure cancer.”

Plant CRY2 Protein

Manipulating the levels of CRY2 and UBP12 and UBP13 proteins in Arabidopsis thaliana plants affects growth. The first plant from the left shows normal growth. The second plant is missing CRY2 and grew too much. The third plant lacked UBP12 and UBP13 and grew shorter. The fourth plant had high levels of UBP12 and UBP13, and the fifth had high levels of CRY2. Credit: Pedmale lab/CSHL, 2022

Plants need the right amount of CRY2 to know when to grow and flower. Pedmale and former postdoctoral fellow Louise Lindbäck discovered that manipulating UBP12 and UBP13 can change the amount of CRY2 in plants. They found that increasing UBP12 and UBP13 reduces CRY2 levels. This made plants think there wasn’t enough light. In response, they grew longer, abnormal stems to reach more. Pedmale says:

“We have a way to understand growth here—and we could manipulate growth just by manipulating two proteins. We have found a way we can actually increase flower output. You need flowering for food. If there’s no flower, there is no grain, no rice, no wheat, no maize.”

Pedmale and Lindbäck didn’t know exactly how UBP12 and UBP13 regulated CRY2. When the researchers took a closer look, they made a surprising discovery. In humans and other organisms, versions of UBP12 and UBP13 protect CRY photoreceptors from degradation. But in plants, the team saw the opposite. UBP12 and UBP13 were actually helping degrade CRY2 instead. Lindbäck, who is currently a research and developmental engineer at Nordic Biomarker in Sweden, explains:

“From literature, it’s known that if you find an interaction like this, it will protect from degradation. Initially, we saw the opposite, and we thought, ‘okay, maybe I did something wrong,’ but then when I did it a few times, we realized, ‘okay, this is true.’ Instead of protecting CRY2, it causes CRY2 to degrade.”

Pedmale hopes their discovery will help plant researchers and plant breeders improve crop yields. He also hopes his work helps inform cancer research. “My colleagues at CSHL are working hard trying to understand cancer,” he says. “We are coming at it from a different angle with plants.”

The study was funded by the National Institutes of Health. 

Reference: “UBP12 and UBP13 deubiquitinases destabilize the CRY2 blue light receptor to regulate Arabidopsis growth” by Louise N. Lindbäck, Yuzhao Hu, Amanda Ackermann, Oliver Artz and Ullas V. Pedmale, 13 June 2022, Current Biology. 
DOI: 10.1016/j.cub.2022.05.046

Adblock test (Why?)

Source link

Continue Reading


Rocket Lab's Lunar Photon Completes Sixth Orbit Raise for NASA's CAPSTONE Mission to The Moon – Parabolic Arc – Parabolic Arc



CAPSTONE (Credit: Terran Orbital)

LONG BEACH, Calif. (Rocket Lab PR) — Rocket Lab USA, Inc. (Nasdaq: RKLB) (“Rocket Lab” or “the Company”), a leading launch and space systems company, today confirmed its Photon Lunar spacecraft successfully completed a sixth on-orbit burn of the HyperCurie engine, bringing the CAPSTONE satellite closer to the Moon. Lunar Photon’s apogee – the point at which the spacecraft is farthest from Earth during its orbit – is now 43,297 miles (69,680 km).

This sixth burn was originally scheduled to be two burns, but Rocket Lab’s space systems team determined the HyperCurie engine would be capable of performing a single maneuver to accomplish the same delta-v, so combined the two.

The next and final burn is designed to set CAPSTONE on a ballistic lunar transfer trajectory to the Moon travelling at 24,500 mph (39,400 km/h) to break free of Earth’s orbit. This final maneuver is currently scheduled to take place as early as July 4th. After separating from Lunar Photon, CAPSTONE will use its own propulsion and the Sun’s gravity to navigate the rest of the way to the Moon, a four-month journey that will have CAPSTONE arriving to its lunar orbit on Nov. 13.


Designed and built Terran Orbital, and owned and operated by Advanced Space on behalf of NASA, the Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) satellite will be the first spacecraft to test the Near Rectilinear Halo Orbit (NRHO) around the Moon. This is the same orbit intended for NASA’s Gateway, a multipurpose Moon-orbiting station that will provide essential support for long-term astronaut lunar missions as part of the Artemis program. CAPSTONE was successfully launched to space on Rocket Lab’s Electron launch vehicle on June 28.

Adblock test (Why?)

Source link

Continue Reading