adplus-dvertising
Connect with us

Science

An award-winning photographer tells you how to take pictures of the night sky – CBC.ca

Published

 on


Dave Brosha is a professional photographer who, over the last 15 years, has taken highly stunning pictures of the Canadian wilderness.

It was when he was living in Yellowknife — before he pursued photography full time — that he first became interested in pointing his lens toward the skies.

“Yellowknife is known as one of the best areas on the planet for displays of the aurora borealis,” he said. “I found myself outside many, many nights under the stars.”

300x250x1

Since then Brosha has been short-listed multiple times for the Astronomy Photography of the Year Awards, and in 2010 he was the first runner-up in the category of land and space.

Now that he’s based in P.E.I., he splits his time between doing commercial assignments and teaching photography to people across Canada and in other parts of the world. 

Every summer, he holds a workshop on the Island with his colleague, Paul Zizka, on sunset and nighttime photography that features astrophotography, the art of capturing a picture of an object in space.

“Between Worlds.” Self-portrait photographed on the edge of a glacier in Iceland. ISO 3200, f/2.5, 30-seconds. (Dave Brosha/Dave Brosha Photography)

“There’s people that are more into deep-space photography, actually photographing the galaxies and close-ups of planets and stars and stuff like that,” Brosha said. “But to me, astrophotography is really just going out into the world once the light disappears and just exploring the beauty of that.”

Dave Brosha. (Amy Stackhouse)

Though his workshop just ended, Brosha took some time to tell CBC what beginners need to know to get into this hobby, which he says at its most barebones doesn’t require more than a fairly basic DSLR camera or a good smartphone — not even a fancy location.

“My favourite nighttime photographs have always just kind of come in my own backyard. I don’t have to drive anywhere, and it’s right there,” he said. 

“Whether exploring star trails or aurora borealis or Milky Way photographs, or just being able to go outside in your own backyard, it’s [all] pretty wonderful. 

“It helps to live in the countryside.”

Switching to manual

All good nighttime photographers — and all good photographers in general — must have a firm grasp on the concept of exposure. That’s the amount of light that’s allowed to reach the camera sensor. A picture that’s underexposed is one that looks too dark.

“Apparitions.” Photographed on a still night at low tide at Hopewell Rocks, New Brunswick. (Dave Brosha/Dave Brosha Photography)

“You have to understand the principles of capturing very small amounts of light over a longer time. So you have to know how to be able to operate your camera to capture those miniscule bits of light,” Brosha said. “It really forces you to slow down and think.”

For starters, that means ditching your camera’s auto settings. 

“You can’t really shoot night photography effectively in just auto mode. You have to learn the exposure triangle,” he said. “It takes a little bit of work, for sure. But the rewards are tremendous.”

Keep it steady

“World Goes Round”. The Old Man of Storr in the Isle of Skye, Scotland. ISO 4000, f/2.8, timelapse stitch of 45 30-second images. (Dave Brosha/Dave Brosha Photography)

The longer the camera’s shutter remains open, the larger the amount of light the camera takes in. As such, in a night photography environment, it’s common to see shutter speeds of over 20 to 30 seconds. 

But a slow shutter speed means the camera is very sensitive to any motion.

That’s great if you’re trying to capture the movement of celestial bodies such as when taking a “star trail” photograph, but even a slight movement could lead to blurry images.

Brosha said that for long exposures, it’s important to keep your camera steady. That means a good tripod is almost a must.

“If all else fails, I’ve improvised by propping my camera up on a solid surface,” Brosha said. “Using a timer on your camera rather than pressing your shutter also helps reduce camera shake.”

Check your ISO

Cranking up the ISO allows for more light to get in the camera at the expense of quality.

That could compensate for a faster shutter speed when capturing a moving object, such as when trying to capture the outlines of bright northern lights.

And having both a slow shutter speed and a high ISO could lead to highly detailed images of the night sky, such as this self-portrait with the Milky Way as a backdrop. It was taken with a 3200-ISO, and a 30-second shutter speed.

“Shine Your Light.” Self-portrait taken in The Pinnacles in Western Australia. ISO 3200, f/2.8, 30 seconds. (Dave Brosha/Dave Brosha Photography)

“When you go out there, and you even just let your eyes adjust for the dark, and you’re out there an hour, it’s remarkable how much more you see. The camera can take that even further,” Brosha said. “[It] picks up so much more.”

Perfect conditions

Brosha said that other than avoiding pouring rain, there are no real “ideal” conditions as to when to venture out, and that all types of weather can lead to interesting pictures.

“Cloudy? Reflected light pollution can actually look interesting in a long exposure. Full moon? Not the best conditions for shooting the Milky Way, but great conditions for being able to see your foregrounds,” he said.

“Where The Wild Winds Blow.” Portrait of Maggie Hood, Iceland. ISO 3200, f/2.2, 2.5-seconds. The subject was lit by an off-camera strobe. (Dave Brosha/Dave Brosha Photography)

A pitch-black night is a prime setting for taking pictures of stars. And if you’re looking to take a picture of the northern lights, you better look, well, north.

“It’s generally easier to photograph on the North Shore, when the aurora borealis is predicted. So that’s what I would probably recommend to people,” Brosha said.

Go out there and shoot

“Night Falls.” Alexandra Falls in the Northwest Territories. ISO 1600, f/7.1, 25-second exposure. (Dave Brosha/Dave Brosha Photography)

Brosha said that astrophotography may look intimidating on the surface, but that it’s not as complicated as most people might think. 

“All you have to grasp to begin is the concept of long exposure. And that usually I find for people is something that they can get the hang of pretty quickly. It just takes a little bit of practice,” he said.

Once you got that nailed down, Brosha said you can get really creative with it. And the setting allows for that.

“Every time you turn on a light, like a flashlight, your eyes kind of lose the adjustment to the nighttime that you’ve gained,” he said. 

“So you really try to function with as little light as possible. And so everything becomes slower and more deliberate.”

Plus, Brosha said, it’s a fine excuse to go outdoors.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

James Webb spots swirling, gritty clouds on remote planet

Published

 on

This illustration conceptualizes the swirling clouds identified by the James Webb Space Telescope in the atmosphere of exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day. Credit: NASA, ESA, CSA, Joseph Olmsted (STScI)

Researchers observing with NASA’s James Webb Space Telescope have pinpointed silicate cloud features in a distant planet’s atmosphere. The atmosphere is constantly rising, mixing, and moving during its 22-hour day, bringing hotter material up and pushing colder material down.

The resulting brightness changes are so dramatic that it is the most variable planetary-mass object known to date. The team, led by Brittany Miles of the University of Arizona, also made extraordinarily clear detections of water, and carbon monoxide with Webb’s data, and found evidence of carbon dioxide. This is the largest number of molecules ever identified all at once on a planet outside our solar system.

Cataloged as VHS 1256 b, the planet is about 40 light-years away and orbits not one, but two stars over a 10,000-year period. “VHS 1256 b is about four times farther from its stars than Pluto is from our sun, which makes it a great target for Webb,” Miles said. “That means the planet’s light is not mixed with light from its stars.”

Higher up in its atmosphere, where the silicate clouds are churning, temperatures reach a scorching 1,500 degrees Fahrenheit (815 degrees Celsius).

300x250x1

Within those clouds, Webb detected both larger and smaller silicate dust grains, which are shown on a spectrum. “The finer silicate grains in its atmosphere may be more like tiny particles in smoke,” noted co-author Beth Biller of the University of Edinburgh in Scotland. “The larger grains might be more like very hot, very small sand particles.”

VHS 1256 b has compared to more massive brown dwarfs, which means that its silicate clouds can appear and remain higher in its atmosphere where Webb can detect them. Another reason its skies are so turbulent is the planet’s age. In astronomical terms, it’s quite young. Only 150 million years have passed since it formed—and it will continue to change and cool over billions of years.

NASA’s Webb Spots Swirling, Gritty Clouds on Remote Planet
A research team led by Brittany Miles of the University of Arizona used two instruments known as spectrographs aboard the James Webb Space Telescope, one on its Near Infrared Spectrograph (NIRSpec) and another on its Mid-Infrared Instrument (MIRI) to observe a vast section of near- to mid-infrared light emitted by planet VHS 1256 b. They plotted the light on the spectrum, identifying signatures of silicate clouds, water, methane and carbon monoxide. They also found evidence of carbon dioxide. Credit: Image: NASA, ESA, CSA, J. Olmsted (STScI); Science: Brittany Miles (University of Arizona), Sasha Hinkley (University of Exeter), Beth Biller (University of Edinburgh), Andrew Skemer (University of California, Santa Cruz)

In many ways, the team considers these findings to be the first “coins” pulled out of a spectrum that researchers view as a treasure chest of data. In many ways, they’ve only begun identifying its contents. “We’ve identified silicates, but better understanding which grain sizes and shapes match specific types of clouds is going to take a lot of additional work,” Miles said. “This is not the final word on this planet—it is the beginning of a large-scale modeling effort to fit Webb’s complex data.”

Although all of the features the team observed have been spotted on other planets elsewhere in the Milky Way by other telescopes, other research teams typically identified only one at a time. “No other telescope has identified so many features at once for a single target,” said co-author Andrew Skemer of the University of California, Santa Cruz. “We’re seeing a lot of molecules in a single spectrum from Webb that detail the planet’s dynamic cloud and weather systems.”

The team came to these conclusions by analyzing data known as spectra gathered by two instruments aboard Webb, the Near-Infrared Spectrograph (NIRSpec) and the Mid-Infrared Instrument (MIRI). Since the planet orbits at such a great distance from its stars, the researchers were able to observe it directly, rather than using the transit technique or a coronagraph to take this data.

There will be plenty more to learn about VHS 1256 b in the months and years to come as this team—and others—continue to sift through Webb’s high-resolution infrared data. “There’s a huge return on a very modest amount of telescope time,” Biller added. “With only a few hours of observations, we have what feels like unending potential for additional discoveries.”

What might become of this planet billions of years from now? Since it’s so far from its stars, it will become colder over time, and its skies may transition from cloudy to clear.

The researchers observed VHS 1256 b as part of Webb’s Early Release Science program, which is designed to help transform the astronomical community’s ability to characterize planets and the disks where they form.

The team’s paper, entitled “The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 Micron Spectrum of the Planetary-Mass Companion VHS 1256-1257 b,” will be published in The Astrophysical Journal Letters.

The work is currently published on the arXiv preprint server.

More information:
Brittany E. Miles et al, The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 Micron Spectrum of the Planetary-Mass Companion VHS 1256-1257 b, arXiv (2022). DOI: 10.48550/arxiv.2209.00620

Provided by
NASA

 

Citation:
James Webb spots swirling, gritty clouds on remote planet (2023, March 22)
retrieved 22 March 2023
from https://phys.org/news/2023-03-james-webb-swirling-gritty-clouds.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

728x90x4

Source link

Continue Reading

Science

Parade of planets: Jupiter, Mercury, Venus, Uranus and Mars alignment

Published

 on

Sky-gazers will be treated to a parade of planets near the end of month when Jupiter, Mercury, Venus, Uranus and Mars will appear together in the night sky.

On March 28, a large planetary alignment will take place when the five planets appear just after sunset, all within a 50-degree sector of the sky, according to sky tracking site Starwalk.

Jupiter and Mercury will appear near the horizon, in the constellation Pisces, while Venus will be visible higher in the sky on the constellation Aries, the sky-tracking site noted.

Next, Uranus will line up nearby but a pair of binoculars may be required to get a glimpse of the planet. Finally, Mars will appear higher in the sky, near the moon, to complete the five-planet alignment.

300x250x1

“Although March 28 is the best day for observation, the alignment will be visible several days before and after that date,” the website explained.

If the weather isn’t in your favour next week, there will be other opportunities to catch a planetary alignment this year, including another five-planet alignment on June 17. Mercury, Uranus, Jupiter, Neptune, and Saturn will be on parade that evening.

728x90x4

Source link

Continue Reading

Science

'Astronomical lightshow' – Gazette

Published

 on


Next year, 2024, is Solar Eclipse Year.

A bird's eye view of a map of Mexico-U.S.-Canada with a line through it indicating the viewing path of the 2024 solar eclipse

300x250x1

On April 8, 2024, a total solar eclipse will be visible from the south Pacific Ocean, northern Mexico, across the U.S. and through the Atlantic provinces of Canada.

More importantly, the total solar eclipse will be visible from southwestern Newfoundland, in the areas of Stephenville and across central Newfoundland through Terra Nova Park and Gander.

A partial eclipse will be visible across the province, with St. John’s and Corner Brook just outside the range of a total eclipse, an 80 per cent eclipse in Labrador City and a 70 per cent eclipse in Nain.

The 2024 solar eclipse will be the first eclipse crossing the province since 1970 and the only one until 2079.

For many, this is a once-in-a-lifetime event to see a total solar eclipse in Newfoundland and Labrador.

“Solar eclipses are special events in many cultures and have allowed scientists to make great discoveries.”

We are fortunate to even be able to observe a solar eclipse.

The Earth is the only place in our solar system where there is a moon that is about the same size in the sky (0.5 degree) as the sun.

Solar eclipses are special events in many cultures and have allowed scientists to make great discoveries.

When the moon passes in front of the sun, most of the light is blocked and we can see the sun’s corona (more about the corona below).

A note: make sure to wear appropriate eye protection during an eclipse to look at the sun.

A composite image of the sun during a solar eclipse, showing the sun from left to right with a partial block of light all the way through a complete block of light and then continuing to a clear view.
This composite image of 13 photographs shows the progression of a total solar eclipse, from right to left, at Madras High School in Madras, Oregon on Monday, Aug. 21, 2017.

Photo: NASA/Aubrey Gemignani

The late Dr. Jay Pasachoff, an American astronomer, was so inspired by solar eclipses that he chased them around the world to experience more than 70 eclipses in about 50 years.

In a New York Times 2010 op-ed, he wrote: “There’s also the primal thrill this astronomical lightshow always brings the perfect alignment, in solemn darkness, of the celestial bodies that mean most to us.”

There is the thrill of observing solar eclipses and there is the thrilling science of them, too.

Thanks to solar eclipses, we learn about the sun’s corona, a thin layer of plasma that is just above the sun’s surface.

We normally can’t see it because it is so thin and has such a small density, but the temperature of the corona is about one million degrees Celsius.

It is believed that the corona is related to the sun’s magnetic field and to things like solar flares and mass ejections.

These flares and mass ejections impact the Earth through space weather and the aurorae — phenomena that those of us in the Northern Hemisphere recognize as the Northern Lights.

Scientific discovery

And it’s not just the sun.

Solar eclipses were important to provide some of the early evidence of Albert Einstein’s Theory of General Relativity.

Einstein predicted that light is bent by the gravity of stars.

So, if we can see stars behind the sun, they will appear to be in a slightly different location in the sky relative to each other than when we see them normally.

In 1919 scientists observed stars behind the sun that became visible during a solar eclipse and found that, indeed, their observations agreed with Einstein’s theory.

Town of Gander a major partner

Solar eclipses are fantastic events that connect humans to nature, celestial bodies and to the universe.

Next year’s celebration is an opportunity to celebrate science, nature and humanity.

Thanks to the enthusiasm and excitement of its staff and council, Prof. Svetlana Barkanova, Department of Physics, Grenfell Campus, and I are partnering with the Town of Gander to host a solar eclipse viewing party on April 8, 2024, and a science festival in the days before the eclipse.

The sun is shown in black with a sliver of light showing on the top right side during a solar eclipse.
Some prominences are seen as the moon begins to move off the sun during the total solar eclipse on Monday, Aug. 21, 2017 above Madras, Oregon.

Photo: NASA/Aubrey Gemignani

The town is excited to be a major partner bringing people from across Newfoundland and Labrador to learn, discover and experience a total solar eclipse together.

The town has pledged to develop a budget to assist with the costs of this unique science festival, along with providing facilities, viewing sites and in-kind assistance.

The event is being planned in collaboration with a continuing science and community outreach program led by Prof. Barkanova and her team.

They deliver a large-scale scientific and cultural outreach program for youth in our province, especially rural youth, girls and Indigenous students, and is currently developing in-person and online seminars and workshops leading up to the solar eclipse.

“It is an ideal chance for us at Memorial to do what we do best — share what is great about our fields.”

This is a call to faculty, students and staff at Memorial University across all campuses to join in the celebration and help it grow and expand.

Not only will we have the opportunity to experience an amazing celestial event, it is a chance to come together in central Newfoundland and share the stories of what we do at Memorial from how we understand the sun and moon in astrophysics, in cultures, in literatures, in humanities and so on.

This is a call to action for your involvement; more participating colleagues means more public talks, Science on Tap events, outreach in schools and more.

It is an ideal chance for us at Memorial to do what we do best — share what is great about our fields and do so around this rare event in Newfoundland and Labrador.

Come join in for Solar Eclipse Year 2024 in Gander. Contact me via email.

Co-authored by Dr. Svetlana Barkanova, Department of Physics, Grenfell Campus, and Brian Williams, tourism development officer, Town of Gander.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending