adplus-dvertising
Connect with us

Science

Analysing large carbonaceous molecules in cosmic environments – Innovation News Network

Published

 on


Dr Christine Joblin of the CNRS and her colleague Dr Hassan Sabbah of the University of Toulouse III – Paul Sabatier highlight the ability of the AROMA molecular analyser to understand the origin of large carbonaceous molecules in cosmic environments.

The James Webb Space Telescope (JWST, NASA/ESA/CSA) has just revealed its amazing capabilities to study the Universe at infrared wavelengths. Among the data, we expect unprecedented information about large carbonaceous molecules that are key species in star- and planet-forming regions.2 These molecules are dominated by the family of polycyclic aromatic hydrocarbons (PAHs) – well-known terrestrial pollutants that are major by-products of combustion processes. It remains to be understood why these PAHs are so abundant in astrophysical environments (they typically contain 10% of the carbon).

What are the mechanisms that recycle carbon in space and (preferentially) form these molecules? So far, the research has been mainly guided by our knowledge of flame chemistry and the proposal that astro-PAHs are produced at the end of the life of carbon-rich stars, in hot and dense envelopes in which the formation of dust and molecular species, such as PAHs, is favoured. Still, as of today, we have no clear observational diagnosis to demonstrate this scenario. In addition, the individual PAHs that have been identified so far (indene C9H8 and cyano-naphthalene C10H7CN)4,5 are present in the TMC-1 dark molecular cloud and are most likely products of very low temperature gas-phase chemistry.

The PAH model

Over the past decade, the unambiguous detection of C60 buckminsterfullerene and its C60+ cation in a variety of astrophysical environments has been a major achievement. It has allowed support for the PAH model. This model, proposed in the 1980s, explains that all the strong aromatic infrared bands observed in emission come from radiative cooling of PAHs heated by ultraviolet photon absorption. We now know that other carriers, such as fullerenes, must be included. Compared to PAHs, the formation of fullerenes requires more extreme conditions – in particular, higher temperatures. This issue motivates studies to propose formation scenarios for C60 in astrophysical environments. These include processing of grains by heat, shocks or high-energy ions and UV photo-processing of large PAHs.6,7

300x250x1

In this paper, we present our approach to address the question of the formation of astro-PAHs and fullerenes from an experimental point of view. This approach is based on two pillars. The first pillar is to use a variety of reactors to produce samples that can be considered as laboratory analogues of stardust. Although it is impossible to mimic the physical and chemical conditions of dying stars, a new machine, Stardust,8 has been built in Madrid (ICMM/CSIC) to advance in this field by offering features not available in other experimental setups, such as the controlled production of (e.g, carbon, silicon) atoms to drive the chemistry.

Cold plasmas are also used as an alternative method to study the impact of complexity on chemistry. In particular, we study the role of metal (e.g., iron) atoms in the formation of dust and large carbonaceous molecules with our colleagues from LAPLACE (CNRS/ Université Toulouse III-Paul Sabatier).9 The second pillar consists of studying samples of extra-terrestrial matter (meteorites) that are rich in carbon. This is the case of carbonaceous chondrites like Murchison and Allende but also of the polymict ureilite meteorite Almahata Sitta (AhS). These two pillars share the common interest of probing the carbonaceous molecular content of samples that may be in the form of dusty deposits or bulk materials, as illustrated in Fig. 1. This topic motivated the development of the Astrochemistry Research of Organics with Molecular Analyzer (AROMA) setup.

Fig. 1: Different types of samples analysed with the AROMA setup. On the left, atomic force microscopic image of Stardust analogues showing the presence of carbon nanoparticles8 and a scanning electron microscope image of dusty plasma analogues showing organosilicon dust decorated with silver nanoparticles.9 In the middle, small fragments of the AhS meteorite observed with a digital microscope12 and image of one of the Hayabusa2 sample container (Yada et al., DOI: 10.1038/s41550-021-01550-6). On the right, picture of the emission of soot particles (Source: COLOA Studio/Shutterstock) and asphaltenes from oil pipelines (Credit: Schlumberger). The structures of the PAH prototype, C16H10 pyrene and C60 fullerene are shown at the bottom

AROMA: the molecular analyzer

The AROMA setup10 has been developed in the framework of the Nanocosmos ERC Synergy project.1 The construction was done by Fasmatech, a young Greek company, following the requirements of our scientific and engineering team. The main objective is to trace the molecular content of various solid samples, especially in large molecules such as polycyclic aromatic hydrocarbons, carbon clusters and fullerenes.

AROMA, as shown in Fig. 2a, consists of three main components: the ion source, the ion trap, and the mass analyzer.

In the ion source, millimetre-sized samples are positioned on an XY manipulator and subjected to laser desorption/ionisation (LDI) techniques. LDI techniques, using a single laser step, are powerful tools for directly probing non-volatile organic species in native or artificial matrices without the need for tedious extraction procedures. In the case of high molecular weight compounds, such as biomolecules, a matrix-assisted LDI (MALDI) technique is typically used. The specificity of AROMA is the use of the L2MS technique, in which the desorption and ionisation processes are separated in time and space and performed with two different lasers. A pulsed infrared laser is used to desorb neutral molecules, followed after a few microseconds by a pulsed ultraviolet laser to selectively ionise the molecules of interest.13 L2MS offers a much higher sensitivity than one-step LDI to the targeted molecules (e.g., in our case, PAHs and fullerenes). In addition, AROMA offers the possibility to isolate and trap ions of a specific mass and to study their fragmentation by collisions with a gas or by absorption of photons from a tuneable laser. Both techniques help us to elucidate the molecular structures of the dominant species. Finally, the ions are mass separated using a high-resolution time-of-flight mass spectrometer (104 resolving power).

large carbonaceous molecules
Fig. 2: (a) Mass spectrum recorded from a bulk sample of the Murchison meteorite. Some of the identified peaks are shown with their mass-to-charge ratio (m/z), associated chemical formula and possible molecular structure. (b) Schematic representation of the AROMA setup highlighting all its components

Fig. 2 shows an example of a mass spectrum recorded for a few mg of crushed powder from the Murchison meteorite. It plots the intensity of the ion signal as a function of the mass-to-charge ratio. This allows us to unequivocally assign a chemical formula to each detected peak and associate it with a pure carbon (Cx) or hydrocarbon (CxHY) species. Other elements, especially in atomic form, may also be present (for example, Na, Al, K, Fe, etc.). Our assignment accuracy approaches 0.01 at a mass/charge ratio m/z ~300. This is our limitation to assign with high confidence organic compounds with N, O and S atoms in their chemical formula. Eventually, hundreds of peaks are identified in the mass spectra with notable discrepancies between different samples. The latter can be used to trace the chemical history of each sample and are not a bias of our analysis.

For example, in the analysis of terrestrial soot samples,11 we were able to track the evolution of carbonaceous molecular families, as a function of height above the burner (Z) and demonstrate efficient thermal processing of the large PAH population to produce hydrogenated carbon clusters (HC clusters) and then fullerenes (see Fig. 3a). To recover this chemical information, large mass spectrometry datasets must be reduced to relevant parameters such as molecular families. For this, our methodology consists in calculating double bond-equivalent (DBE) values, which are representative of the unsaturation level of the molecules. The different ranges of DBE values allow us to disentangle the molecular families: PAHs, HC clusters, aliphatic species (very rare in our samples because the ultraviolet laser is not adapted to their ionisation), carbon clusters and fullerenes.

large carbonaceous molecules
Fig. 3: Compositional diversity in the four molecular families (PAHs, HC clusters, C clusters, and fullerenes) obtained after DBE analysis. (a) Soot samples collected at different heights above the burner11 and analogues produced with the Stardust machine using atomic carbon and different gases (H2 from8 and C2H2 from Santoro et al, DOI: 10. 3847/1538-4357/ab9086 ). (b) Murchison, Allende and two AhS meteorite fragments10,12

Fig. 3 illustrates the method and shows the results of molecular family analysis for several samples, including terrestrial soot, stardust analogues (Fig. 3a), and several meteorites (Fig. 3b). PAHs dominate the molecular composition of carbonaceous chondrites (Murchison and Allende). In contrast, the two AhS fragments, AhS#04 and AhS#48, show a greater diversity of molecular families, which have been shown to originate from different cosmic reservoirs.

All mass spectra associated with published work are publicly available in the AROMA database. The database provides the ability to calculate and plot DBE values, and to perform molecular family analyses. We are also developing a method to assess the similarity between recorded mass spectra and how it can be used to provide faster investigation and additional information about the chemical history of a sample.

Amazing results and perspectives

Initially seen as an analytical tool to support the Stardust machine, AROMA has now become a key facility to contribute to our understanding of the origin of large carbonaceous molecules in cosmic environments. In the term cosmic, we include astrophysical environments (e.g., evolved stars as stardust factories) but also our Solar System, via extra-terrestrial samples that we can access in the laboratory.

In connection with the Stardust machine, the most important result we have obtained so far is the near absence of aromatics formed in the chemistry of atomic carbon with molecular hydrogen. This casts doubt on the possibility of forming abundant PAHs by gas-phase chemistry in the envelopes of evolved stars.

But the result that opens up the greatest prospects is certainly the unexpected but firm detection of fullerenes, from C30 to at least C100, in the Almahata Sitta (AhS) polymict ureilite meteorite. We are now in a rather unique position to search for fullerenes in a variety of extra-terrestrial samples. In particular, we were recently fortunate to receive two grains from the asteroid Ryugu that were carried by JAXA’s Hayabusa2 sample return mission. Ryugu is a C-type asteroid that is considered one of the most pristine objects in the Solar System. The analysis of this type of object will allow us to circumvent the problem of meteorite alteration linked to the shocks during their ejection and to the heating during their entry into the Earth’s atmosphere, as well as to a possible terrestrial contamination. We believe that this work can give us new insight into the origin of fullerenes in astrophysical environments.

We also expect a big step forward with the next JWST results, including the identification of individual species among the molecular families studied by AROMA: fullerenes, PAHs, C clusters, as well as new information on the chemical relationship between these families and with the dust particles.

The prospect of changing our view of the cosmic carbon cycle has never been closer and it is quite exciting. In addition to the fantastic challenges that JWST and Hayabusa2 have met, innovation will also be required on the laboratory side. A major advance that we hope to address in our research activity is the possibility to couple the L2MS technique to an OrbitrapTM mass analyser that offers very high mass resolution and thus opens new perspectives to trace the origin of organic matter in samples of cosmic interest.

Acknowledgements

This research was supported over the period 2014-2021 by the ERC under the European Union’s Seventh Framework Programme ERC-2013-SyG, Grant Agreement no. 610256, Nanocosmos.

References (with open access)

1: Nanocosmos ERC Synergy project: J Cernicharo, C. Joblin, J.-A. Martín Gago, https://nanocosmos.iff.csic.es/

2: Early Release Science of JWST: “Radiative feedback from massive stars”: Berné, O, Habart, E, Peeters, E, et al., Publ. Astron. Soc. Pac. 134 (1035) (2022), id.054301; https://arxiv.org/abs/2201.05112

3: “Astro-PAHs from space missions to laboratory astrophysics”; Joblin, C, The Innovation Platform issue 8 (2021), p.228-231; https://www.innovationnewsnetwork.com/astro-pahs-space-missions-to-laboratory-astrophysics/15527/

4: Observation of indene in the dark molecular cloud TMC-1: Cernicharo, J, et al., Astron. & Astrophys. 649 (2021), id.L15, 12 pp.; https://doi.org/10.1051/0004-6361/202141156

5: Observation of cyanonaphthalene in the dark molecular cloud TMC-1: McGuire, B. A., et al., Science 371 (2021), 1265–1269; https://arxiv.org/pdf/2103.09984.pdf

6: Discussion about formation scenarios of C60 in planetary nebulae: Cami, J., et al., Galaxies 6 (4) (2018), p. 101; https://www.mdpi.com/2075-4434/6/4/101

7: Scenario to form C60 from large PAHs: Berné, O, Tielens, A G G M, Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 401-406; https://doi.org/10.1073/pnas.111420710

8: Stardust machine and the (non)formation of aromatics in evolved stars: Martínez, L, Santoro, G, Merino, P, et al., Nature Astron. 4 (2020), 97-105; https://hal.archives-ouvertes.fr/hal-03085475

9: Role of metals in (star)dust chemistry investigated in cold plasmas: Bérard, R, et al., Front. astron. space sci. 8 (2021), 654879; https://hal.archives-ouvertes.fr/hal-03227179

10: AROMA setup: Sabbah, H, et al., Astrophys. J. 843 (2017), id. 34, 8 pp.; https://arxiv.org/ftp/arxiv/papers/1705/1705.09974.pdf

11: Analysis of soot samples with AROMA: Sabbah, H, et al., Proc Combust Inst 38 (2021), 1241–1248; https://doi.org/10.1016/j.proci.2020.09.022

12: Detection of fullerenes in the Almahata Sitta meteorite: Sabbah, H, et al., Astrophys. J. 931 (2022), id.91; https://iopscience.iop.org/article/10.3847/1538-4357/ac69dd

13: First presentation of the L2MS technique and its application to extra-terrestrial samples: Spencer, M K, Hammond, M R, and Zare, R N, Publ. Astron. Soc. Pac. 105 (2008), 18096-18101; https://doi.org/10.1073/pnas.0801860105

Please note, this article will also appear in the eleventh edition of our quarterly publication.

Contributor Details

Subscribe to our newsletter

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Ice Age Squirrel Found in Canada! » Expat Guide Turkey – Expat Guide Turkey

Published

 on


The remains of an Ice Age squirrel that was mummified to death during hibernation some 30,000 years ago have been found in Canada.

The 30,000-year-old animal found in the Klondike goldfields in 2018 will soon be on display in Whitehorse, Northern Canada.

Yukon paleontologists this week unveiled another unusual find from the gold fields near Dawson City: an Arctic squirrel that curled up and mummified as if it died during hibernation during the Ice Age.

300x250x1

A Squirrel Mummy Found by Yukon Paleontologists at the Gold Field near Dawson City

The Ice Age squirrel was actually found a few years ago, but its announcement is now being made as the government is preparing the dead rodent for display at the Yukon in Whitehorse.

At first glance, this mummified animal looks like nothing more than a dried up pile of brown fur and skin.

Intact Bone Structure Detected Inside the Remains

Yukon government paleontologist Grant Zazula says, “It’s hardly recognizable until you see the tiny hands and claws, a little tail, and then the ears.” says.

“I’m always examining bones and these are very exciting. But when you see a perfectly preserved animal, especially if it’s 30,000 years old and you can see its face, its skin, its fur, it’s really special.”

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Apr 1: Tyrannosaur lips, bald eagles dine on beef, saving the orbital environment and more… – CBC.ca

Published

 on


Quirks and Quarks54:02Tyrannosaur lips, bald eagles dine on beef, saving the orbital environment, how your fingerprints are built and how humans run on electricity


On this week’s episode of Quirks & Quarks with Bob McDonald:

300x250x1

Tyrannosaurus rex had lips covering its terrifying teeth

Quirks and Quarks8:33Tyrannosaurus rex had lips covering its terrifying teeth

Many depictions of the iconic Tyrannosaurus rex show the dinosaur’s huge teeth as constantly exposed in a crocodilian smile. But a new study published in the journal Science concludes that theropod dinosaurs like the T. rex likely had scaly, lizard-like lips that covered their teeth completely when the dinosaur’s mouth was closed. Canadian paleontologist Dr. Thomas Cullen, a professor at Auburn University, and his co-authors analyzed wear patterns on tooth enamel of the dinosaurs, as well as jaw sizes, and compared them to modern-day animals. He said the T. rex mouth would have likely been most similar to that of a Komodo dragon.

Scientists and artists have developed two principal models of predatory dinosaur facial appearances: crocodylian-like lipless jaws or a lizard-like lipped mouth. New data suggests that the latter model, lizard-like lips, applies to most, or all, predatory dinosaur species. (Mark P. Witton)

Eagles are eating cows instead of salmon – and farmers are happy

Quirks and Quarks7:59Eagles are eating cows instead of salmon – and farmers are happy

In the Pacific Northwest of the U.S., bald eagles, which have historically fed on the carcasses of spawning chum salmon, have run short of their traditional food due to climate change and other factors. But a new study in the journal Ecosphere by Ethan Duvall, a PhD student in ecology at Cornell University, indicates the eagles have moved inland and are now scavenging cattle who have died on dairy farms. Farmers, it turns out, are happy with this, as it solves a troubling disposal problem, and because the eagles also displace rodents and other birds that do harm to the farms.

A bald eagle in flight against clouds in the blue sky
Bald eagles have shifted their diet from chum salmon carcasses to the carcasses of dairy cows in the northwestern U.S. (NICK BALACHANOFFF)

Inspired by the High Seas treaty, scientists are calling for the protection of space

Quirks and Quarks7:47Inspired by the High Seas treaty, scientists are calling for the protection of space

In early March, nearly 200 United Nations member countries agreed to the first-ever treaty to protect the world’s oceans. Imogen Napper, a marine biologist at the University of Plymouth in England, and a group of colleagues are calling for a similar legally binding treaty to protect the Earth’s orbit from exploitation by the ever-growing global space industry. Their concerns were put forward in a letter in the journal Science.

A woman looks up into a starry sky with a beam of light coming from her headband light
Marine biologist Imogen Napper has turned her attention from ocean plastic pollution to protecting the Earth’s orbit from space debris. (Eleanor Burfit)

Arches, loops and whorls — how your unique fingerprints are made

Quirks and Quarks7:40Arches, loops and whorls — how your unique fingerprints are made

There are eight billion people in the world, each with a unique pattern of ridges on our fingertips. Now, scientists have discovered that the process by which these intricate and complex patterns arise is similar to how animals get their spots or stripes. Duelling genetic and chemical signals during fetal development give rise to changes in the ridges and spaces between them that cover our fingertips. Denis Headon, a geneticist from the University of Edinburgh, traced how this interplay results in the complex whorls, loops and arches that make up our fingerprints. His research was published in the journal Cell.

A computer monitor on a black desk in an ambiently lit room has a giant fingerprint blown up on it taking up the entire screen.
A fingerprint is enlarged for examination at the US Homeland Security Investigation Forensic Laboratory in Tyson Corner, Virginia. A new study describes how our fingerprints get their unique patterns. (Paul J. Richards/AFP/Getty Images)

Humans are fueled by food — but we run on electricity

Quirks and Quarks19:31Humans are fueled by food — but we run on electricity

Every living cell works as a battery, with the ability to respond to and send out electrical signals. Science and technology journalist, Sally Adee, became fascinated with this realization after participating in an experiment in which a gentle electrical current, delivered to her brain, gave her the abilities of an expert sharpshooter. Bob McDonald speaks with her about her new book, We Are Electric: Inside the 200-Year Hunt for Our Body’s Bioelectric Code, and What the Future Holds. In it, she explores how much our biology — from our bodies’ ability to heal to the higher order processes of human thought — works through electricity.

Someone's hand can be seen holding a multitude of colourful wires emanating from the electrodes in a cap that he's wearing as he sits inside a makeshift cockpit.
A man holds electrodes set up on the head of Swiss scientist-adventurer and pilot Bertrand Piccard that will monitor his electrical brain waves prior to a non-stop 72 hours simulation test flight in 2013. (Fabrice Coffrini/AFP/Getty Images)

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Meet the Canadian astronauts up for a seat on the Artemis II mission to the moon

Published

 on

This Sunday, NASA and the Canadian Space Agency (CSA) will announce the four astronauts that will be blasting off to fly around the moon for the Artemis II mission, one of whom will be a Canadian astronaut.

The Artemis II mission will be the first crewed mission to orbit the moon in half a century, and the inclusion of a Canadian astronaut on the mission will make Canada the second country to have an astronaut fly around the moon.

In November 2024, NASA’s Kennedy Space Center in Florida will launch the four astronauts into space for the Artemis II mission. They will pilot the Orion spacecraft around the Earth and then around the moon before returning home.

It’s the second step of a project that started last year with the unmanned Artemis I mission. The Artemis missions help to test the launch system and the spacecraft itself. The end goal is for scientists to construct a Lunar Gateway at the moon — a space station that could serve as a jumping off point for further deep space exploration.

300x250x1

A trailer for the crew announcement was posted by NASA on Wednesday.

There are currently four active Canadian astronauts, but we won’t know until Sunday who will be the first Canadian astronaut to fly around the moon.

THE CANDIDATES

Joshua Kutryk

Kutryk was born in Fort Saskatchewan, Alberta and grew up on a cattle farm in eastern Alberta. He is a member of the Canadian Armed Forces, and has been deployed in Libya and Afghanistan in the past.

He worked as an experimental test pilot and fighter pilot in Cold Lake, Alberta before he was recruited by the CSA. He worked on numerous test flight projects as well as on improving the safety of fighter jets such as the CF-18.

Kutryk made it to the top 16 candidates for the CSA in 2009, but wasn’t selected until CSA’s 2017 recruitment campaign.

He obtained the official title of astronaut in January 2020.

Jennifer Sidey-Gibbons

Sidey-Gibbons comes from Calgary, Alberta, and first worked with the CSA while studying mechanical engineering at McGill University, where she conducted research on flame propagation in microgravity in collaboration with the agency.

Before joining CSA, she lived and worked in the U.K. as an assistant professor in the Department of Engineering at the University of Cambridge. Her research there focused on how to develop low-emission combusted for gas turbine engines.

She was selected by the CSA in 2017 as a recruit along with Kutryk, and obtained the official title of astronaut in January 2020.

Jeremy Hansen

Hansen was born in London, Ontario and spent his childhood first on a farm near Ailsa Craig, Ontario, and then Ingersoll, Ontario. He is married with three children.

By age 17, he had already obtained glider and private pilot licences through the Air Cadet Program. He is a member of the Canadian Armed Forces and served as a CF-18 fighter pilot before becoming an astronaut.

Hansen graduated as an astronaut in 2011, after being selected as one of two recruits for the CSA in 2009. He currently represents the CSA at NASA and works at the Mission Control Center, serving as the point of connection between the ground and the International Space Station (ISS). He also helps to train astronauts at NASA, the first Canadian to do so.

David Saint-Jacques

Saint-Jacques grew up in Saint-Lambert, Quebec, near Montreal, and is married with three children.

Before joining the CSA, he worked as a medical doctor in Puvirnituq, Nunavik, an Inuit community in northern Quebec. He also works as an adjunct professor of family medicine at McGill University. As a biomedical engineer, he has worked in France and Hungary, and helped to develop optics systems for telescopes and arrays used at observatories in Japan, Hawaii and the Canary Islands.

He was selected as a recruit in 2009 by the CSA and graduated in 2011 from the NASA astronaut program. He has since worked with the Robotics Branch of the NASA Astronaut Office, as a support astronaut for various ISS missions and as the mission control radio operator for a number of resupply missions for the ISS.

In December 2018, Saint-Jacques flew to the ISS to complete a 204-day mission, which is the longest mission any Canadian astronaut has carried out in space to date. During this time, he became the fourth CSA astronaut to conduct a spacewalk and the first CSA astronaut to catch a visiting spacecraft using the Canadarm2.

 

728x90x4

Source link

Continue Reading

Trending