Connect with us


And Then the Sea Glowed a Magnificent Milky Green – Hakai Magazine



Article body copy

The sky was moonless and overcast, leaving no stars to steer by. Alone at the helm in the middle of the Arabian Sea, somewhere between Oman and India, I could see nothing in the ink-black night save for our ship’s dimly lit compass rolling on its gimbal mount as we heaved and swayed through three-meter seas. But half an hour into my shift, the sails above me began to glow, as if the moon had risen. But there was no moon, nor any stars or other ships. The light, it seemed, was coming from below and growing in intensity. Soon the entire ocean was glow-stick green, but muted, as if the light were shining through a sea of milk.

It was August 2010, and I’d been sailing for over two months by then, volunteering with the NGO the Biosphere Foundation to deliver the Mir, a 35-meter ketch they’d recently acquired in Malta, back to their home port in Singapore. During the voyage, I’d grown accustomed to the usual “sea sparkle” caused by dinoflagellates that ignite when the water is agitated, causing ribbons of light to twist off the Mir’s bow. But this was not that. This was the whole of the ocean, as far as I could see, glowing a uniform, opaque green. Despite the compass still wheeling in its mount, the light in the water created an optical illusion, making the sea appear perfectly calm, as if we were gliding through phosphorescent skies rather than roiling seas.

I woke the rest of the crew, and for over four hours we remained engulfed in this sea of green light, wonderstruck, with no idea what it was we were witnessing. Finally, a razor-sharp line appeared ahead of us where the lambent sea ended and blackness began. Crossing it, we left behind that numinous phantom world and re-entered a familiar one, though we could still see the gauzy green glow to our stern for another hour before it disappeared. It wasn’t until we arrived at port 10 days later that we would learn the name for the eerie phenomenon that had surrounded us: a milky sea.

In August 2010, author Sam Keck Scott and his crewmates were sailing in the Arabian Sea when they became some of the few people to witness a milky sea. Photo courtesy of Biosphere Foundation

For centuries, sailors have been describing milky seas, rare occurrences where enormous expanses of the ocean light up uniformly at night, at times stretching for tens of thousands of square kilometers, or more. W. E. Kingman, captain of the clipper Shooting Star, had this to say upon witnessing one in 1854: “The scene was one of awful grandeur; the sea having turned to phosphorus, and the heavens being hung in blackness, and the stars going out, seemed to indicate that all nature was preparing for that last grand conflagration which we are taught to believe is to annihilate this material world.”

A milky sea even made an appearance in Moby-Dick, where Melville describes a mariner sailing through a “shrouded phantom of the whitened waters” that were as “horrible to him as a real ghost.”

Neither our small crew, nor Melville or Kingman, knew what caused the seas to glow. In 2010, our crew had the benefit of living in a world far better charted by science than it had been in the 1800s, which may explain why Kingman and Melville’s mariner responded with god-struck terror, while we gawked in wonder, knowing that no matter how otherworldly this phenomenon may appear, it was clearly of this world.

Bioluminescence—the emission of light by a living organism—is common on our planet, and nowhere more so than in the oceans. Bioluminescent fish, tunicates, dinoflagellates, crustaceans, mollusks, jellyfish, and bacteria glow and flash across our seas at night. But milky seas, despite being so vast, are anything but common, and are thought to be caused by one of the smallest organisms in the ocean.

Every observation of a milky sea throughout history has been a chance encounter, as mine was, and only once did a vessel with any scientific research capabilities happen upon one, when the USS Wilkes steamed through a milky sea for three consecutive nights off the island of Socotra, Yemen, in 1985. Onboard the Wilkes was the late marine biologist David Lapota, who was working for the navy at the time studying bioluminescence. Lapota and his team of researchers sampled the water and discovered a profusion of the bioluminescent bacterium Vibrio harveyia common, well-dispersed species known to luminesceattached to bits of algae, leading them to hypothesize that legions of this bacterium and potentially other bioluminescent bacterial species as well, are the cause of milky seas. This research, conducted nearly 40 years ago, remains the only time a milky sea was ever studied in the field.

bioluminescent glow in a flask

There are no existing photos of a milky sea in nature, but this sample of bioluminescing bacteria demonstrates the uniform glow of the phenomenon on a small scale. Photo courtesy of Steve Miller

Assuming scientists are correct that milky seas are caused by bacteria, a question remains: why? Unlike many organisms that evolved bioluminescence as a means to escape predation, bioluminescent bacteria want to be eaten—the inside of a fish’s gut provides a more reliable home than floating freely in the open ocean. But a lone bacterium is likely too small to get the attention of a fish on its own, so for their microscopic bioluminescence to express on a macroscale, they require strength in numbers. To work together, each bacterium releases a chemical signal to sense if other bacteria are nearby, and only once they’ve recognized a sufficient numberscientists hypothesize that it takes a population of somewhere between 10 and 100 million bacteria per milliliter of waterwill they begin to luminesce. This is a process called quorum sensing, and it may explain why milky seas form.

In areas of upwelling, such as the northwest Indian Ocean, where an abundance of nutrient-rich, decaying organic material—such as bits of decomposed crabs or even specks of long-dead whales—is pushed up to the surface from the depths, bacteria will find plenty to colonize. When these rich waters become isolated due to currents, or when distinct masses of water with differing salinities or temperatures meet and form physical fronts, they can prevent mixing, which in turn can result in a sort of concentrated stew—what scientists have dubbed “the natural flask hypothesis.” In this scenario, through quorum sensing, these bacteria set off a chemical glow that can become the largest display of bioluminescence on the planet.

This idea of a natural flask may help to explain why, when our boat first sailed into a milky sea, the light was diluted and nearly imperceptible, but when we exited it hours later, we crossed a distinct boundary. On one side of that particular event, the glowing and non-glowing waters were mixing, while on the other side, due to some sort of oceanic front, a wall-like barrier was being maintained between the specialized—and little understood—conditions that allow milky seas to form and those conditions that do not. This is but one of many things scientists hope to better understand by further studying milky seas in the field, which, thanks to a new generation of satellite technology, may soon be possible.

Steve Miller, director of the Cooperative Institute for Research in the Atmosphere, has been part of a small group of scientists leading the effort to demystify milky seas for nearly 20 years, searching for them from the unlikeliest of places: Fort Collins, Colorado. He’s the first person to discover a milky sea from his office chair.

Miller contacted me shortly after I wrote a blog post about our experience sailing through a milky sea, excitedly informing me that our ship’s crew are among the few known people alive today to have ever witnessed one. Our brief correspondence left me feeling like a minor celebrity.

Miller first became interested in milky seas in 2004 while attending an American Meteorological Society conference. There, Miller and his colleagues considered whether it might be possible to observe any type of marine bioluminescence from space. It was assumed that any small-scale bioluminescence, such as sea sparkle, produces far too weak a light signal to be seen from so far away. But Miller, intrigued by the idea of studying the sea from space, did some research when he returned home and was struck to discover dozens of surprisingly consistent accounts of so-called milky seas given by mariners throughout the centuries. An atmospheric scientist by training, Miller wondered if he could use historical satellite data to locate one of these events. It didn’t take long to find what he was looking for: a detailed account of a milky sea seen by the crew of the SS Lima off the coast of Somalia on January 25, 1995. The account listed the exact coordinates and time when the boat had entered the luminous event. Using the heading and speed from the ship’s log, Miller was able to extrapolate the position of the Lima at the time the crew claimed to have exited the glowing waters six hours later. He plotted the points, the date, and the times on the image, and zoomed in on the grainy black-and-white photo. “It was all black,” he tells me.

Undeterred, Miller decided to scale the image down some more, searching through the noise of a photograph taken from over 800 kilometers away. Suddenly, a small structure appeared in the center of his computer screen that he at first mistook for a fingerprint smudge, but when he moved the image around, the smudge moved along with it. He zoomed in some more and a comma shape appeared in the waters off the Horn of Africa. When he once again overlaid the ship’s coordinates, they lined right up with the comma’s boundaries. “That’s when we realized we had something,” he says. The shape, larger than the state of Connecticut, was over 15,000 square kilometers of glowing bacteria.

“I’ve been hooked on that ever since,” says Miller, “because I realized I’d just seen a ghost.” Milky seas were more a part of novels and folklore than of scientific knowledge, he explains, but here they had the first-ever space-borne confirmation of a milky sea.

Since that initial discovery, a new generation of satellite technology has greatly improved Miller’s hunt for milky seas. Two satellites operated by the National Oceanic and Atmospheric Administration—the Suomi National Polar-orbiting Partnership and the Joint Polar Satellite System—were launched in 2011 and 2017, respectively. These modern satellites, though not intended to search for milky seas, are equipped with specialized day/night band instruments that, at their extreme low end of sensitivity, can pick up something as dim as bioluminescence from space. Miller and his team have been combing through the imagery provided by these satellites ever since, having greatest success in the two areas of the globe where historical ship sightings of milky seas have been most prevalent: the northwest Indian Ocean, where 70 percent of all milky seas have been reported, and the waters surrounding Java, where 17 percent of sightings have occurred. In the past decade, Miller and his team have successfully identified a dozen milky seas via satellite imagery, the most significant of which was a 2019 event off the coast of Java spanning over 100,000 square kilometers—roughly the size of Iceland—which glowed continuously for at least 45 nights.

satellite images of milky seas off Java

Steve Miller, director of the Cooperative Institute for Research in the Atmosphere, and his colleagues have identified the location of several milky seas by using satellite images acquired with the use of specialized day/night band instruments that can perceive bioluminescence from space. Photo courtesy of Steve Miller

Now that Miller and his team have confirmed that milky seas can last for weeks at a time, it opens up the possibility of deploying a research vessel to study one while it’s still glowing. Only then do they hope to be able to answer some of the many questions scientists still have about milky seas, including one of Miller’s favorites: how deep does the bioluminescence go down in the water column? Is it merely a surface slick of bacteria, as some scientists posit, or is it meters thick, or more? Considering scientists believe it takes upward of 100 million bacteria per cubic centimeter of water to begin glowing, the answer to this question could change the estimated number of bacteria involved in a milky sea by billions of trillions, or possibly even trillions of trillions.

When I first learned of Miller’s breakthrough research, part of me felt protective of the mystique of milky seas. Why must we humans insist on explaining everything? But as I learned more about what scientists believe might cause milky seas—about upwelling and natural flasks; about quorum sensing and the intentional, communal light made by trillions of bacteria—I realized that finding answers doesn’t necessarily correlate with diluting the wonder of such an event. If anything, it makes it that much more incredible.

Without understanding the world around us, we are all Captain Kingman, terrified by the sight of something we don’t recognize. Instead, we can be in awe of reality itself, knowing that whenever one question is answered, we’ve simply learned enough to ask a thousand more.

Adblock test (Why?)

Source link

Continue Reading


2022-06-29 | NDAQ:RKLB | Press Release | Rocket Lab USA Inc. – Stockhouse



Rocket Lab USA, Inc. (Nasdaq: RKLB) (“Rocket Lab” or “the Company”), a leading launch and space systems company, today announced its Lunar Photon spacecraft has successfully completed the third of seven planned orbit raising maneuvers, bringing the CAPSTONE spacecraft closer to the Moon.

This press release features multimedia. View the full release here:

The CAPSTONE satellite integrated onto Rocket Lab’s Lunar Photon spacecraft before launch on the Electron rocket. (Photo: Business Wire)

Owned and operated by Advanced Space on behalf of NASA, the Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) CubeSat will be the first spacecraft to test the Near Rectilinear Halo Orbit (NRHO) around the Moon. This is the same orbit intended for NASA’s Gateway, a multipurpose Moon-orbiting station that will provide essential support for long-term astronaut lunar missions as part of the Artemis program.

The orbit raising maneuvers come after Rocket Lab successfully launched CAPSTONE to an initial parking orbit on June 28 with an Electron rocket from Launch Complex 1 in New Zealand. With Electron’s role in the mission now complete, Lunar Photon has taken over the reins, providing power, communications and in-space transportation to CAPSTONE for the next five-day mission phase.

Over these days, Lunar Photon’s HyperCurie engine will perform a series of orbit raising maneuvers by igniting periodically to increase Photon’s velocity, stretching its orbit into a prominent ellipse around Earth. Six days after launch, HyperCurie will ignite one final time, accelerating Photon Lunar to 24,500 mph (39,500 km/h) and setting it on a ballistic lunar transfer. Within 20 minutes of this final burn, Photon will release CAPSTONE into space for the first leg of the CubeSat’s solo flight. CAPSTONE’s journey to NRHO is expected to take around four months from this point. Assisted by the Sun’s gravity, CAPSTONE will reach a distance of 963,000 miles from Earth – more than three times the distance between Earth and the Moon – before being pulled back towards the Earth-Moon system.

Rocket Lab founder and CEO Peter Beck said the launch of the CAPSTONE mission was the culmination of two and a half years of work and it pushed the Electron launch vehicle to the limit. “Electron lifted its heaviest payload yet at 300 kg – the combined mass of Lunar Photon and CAPSTONE. We pushed the Rutherford engines harder than we ever have before and deployed Lunar Photon and CAPSTONE exactly where they needed to go to begin the next mission phase. Now it’s Lunar Photon’s show and we’re immensely proud of its performance so far. We’re really pushing the boundaries of what’s possible for interplanetary smallsat missions with CAPSTONE and it’s exciting to think about the possibilities it opens up for more cost-effective missions to Mars, Venus and beyond.”

+ Images & Video Content

+ About Rocket Lab

Founded in 2006, Rocket Lab is an end-to-end space company with an established track record of mission success. We deliver reliable launch services, satellite manufacture, spacecraft components, and on-orbit management solutions that make it faster, easier and more affordable to access space. Headquartered in Long Beach, California, Rocket Lab designs and manufactures the Electron small orbital launch vehicle and the Photon satellite platform and is developing the Neutron 8-ton payload class launch vehicle. Since its first orbital launch in January 2018, Rocket Lab’s Electron launch vehicle has become the second most frequently launched U.S. rocket annually and has delivered 147 satellites to orbit for private and public sector organizations, enabling operations in national security, scientific research, space debris mitigation, Earth observation, climate monitoring, and communications. Rocket Lab’s Photon spacecraft platform has been selected to support NASA missions to the Moon and Mars, as well as the first private commercial mission to Venus. Rocket Lab has three launch pads at two launch sites, including two launch pads at a private orbital launch site located in New Zealand and a second launch site in Virginia, USA which is expected to become operational in 2022. To learn more, visit

Adblock test (Why?)

Source link

Continue Reading


Get hype for the first images from NASA’s James Webb Space Telescope – Yahoo Movies Canada



Very soon, humanity will get to view the deepest images of the universe that have ever been captured. In two weeks, the $10 billion James Webb Space Telescope (JWST) — NASA’s super expensive, super powerful deep space optical imager — will release its first full-color images, and agency officials today suggested that they could just be the beginning.

“This is farther than humanity has ever looked before,” NASA Administrator Bill Nelson said during a media briefing Wednesday (he was calling in, as he had tested positive for COVID-19 the night before). “We’re only beginning to understand what Webb can and will do.”

NASA launched James Webb last December; ever since, it’s been conducting a specialized startup process that involves delicately tuning all 18 of its huge mirror segments. A few months ago, NASA shared a “selfie” marking the successful operations of the IR camera and primary mirrors. Earlier this month, the agency said the telescope’s first images will be ready for public debut at 10:30 AM ET on July 12.

One aspect of the universe that JWST will unveil is exoplanets, or planets outside our Solar System — specifically, their atmospheres. This is key to understanding whether there are other planets similar to ours in the universe, or if life can be found on planets under atmospheric conditions that differ from those found on Earth. And Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate, confirmed that images of an exoplanet’s atmospheric spectrum will be shared with the public on July 12.

Essentially, James Webb’s extraordinary capacity to capture the infrared spectrum means that it will be able to detect small molecules like carbon dioxide. This will enable scientists to actually examine whether and how atmospheric compositions shape the capacity for life to emerge and develop on a planet.

NASA officials also shared more good news: The agency’s estimates of the excess fuel capability of the telescope were spot on, and JWST will be able to capture images of space for around 20 years.

“Not only will those 20 years allow us to go deeper into history and time, but we will go deeper into science because we will have the opportunity to learn and grow and make new observations,” NASA deputy administrator Pam Melroy said.

JWST has not had an easy ride to deep space. The entire project came very close to not happening at all, Nelson said, after it started running out of money and Congress considered canceling it entirely. It also faced numerous delays due to technical issues. Then, when it reached space, it was promptly pinged by a micrometeoroid, an event that surely made every NASA official shudder.

But overall, “it’s been an amazing six months,” Webb project manager Bill Ochs confirmed.

Adblock test (Why?)

Source link

Continue Reading


The Rings of Uranus and Neptune Could Help map Their Interiors – Universe Today



Mapping the interior of the ice giants is difficult, to say the least. Not only are they far away and therefore harder to observe, but their constant ice cover makes it extremely hard to detect what lies underneath. So scientists must devise more ingenious ways to see what’s inside them. A team from the University of Idaho, Cal Tech, Reed College, and the University of Arizona think they might have come up with a way – to look at the structure of Neptunes’ and Uranus’ rings.

This isn’t the first technique scientists have used, though. Previous efforts have attempted to use the common technique of photometry to detect oscillations on the planet’s surface. Those oscillations can then be correlated to the density of particular parts of the planet’s interior. While the technique worked well for Jupiter, the photometry data we have of the ice giants so far have proved insufficient to determine the same density profiles. 

An alternative is using gravitational oscillations within the planet’s surface. In particular, there is a type of oscillation pattern known as a “normal mode.” This oscillation pattern happens when all parts of a system begin oscillating with the same sinusoidal frequency. And the gravitational effects of normal mode oscillations in the planet’s interior can be felt outside and reflected in the rings themselves.

[embedded content]
UT video discussing planetary rings in the solar system

It also isn’t the first time patterns in a planet’s rings have been used to calculate its internal density. Saturn has a better-understood ring system than Uranus or Neptune, the two ice giants with known ring systems. Scientists have been performing seismological analyses on the Saturnian ring system for years using data from Voyager and Cassini. The result is a better understanding of some of the normal modes of the planet’s interior and, therefore, an estimate of the makeup of the planet’s core and the rotation rate of the bulk of its material.

Neptune and Uranus each have a series of different rings, though they are not as well studied as Saturn’s. Some of those rings of which are corralled by shepherd moons. But according to the new paper, the same density reflections of resonance waves evident in Saturn’s rings are likely present in the ice giant’s ring systems as well.

What’s more, the inner shepherd moons themselves might be affected by the same resonances. Some of the moons can even create their own resonances, such as one known as a Lindblad resonance. More typically seen on the scale of galaxies, Lindblad resonances are known for driving spiral density waves, which cause the “arms” that can be seen in many spiral galaxies. But at a much smaller scale, the same effect happens on planetary ring systems, including Saturn’s, and most likely, Neptune’s and Uranus’.  

[embedded content]
UT video describing the Trident mission, which would return to Neptune.

The problem with using these resonances reflected in the rings is one that often faces science – there’s not enough data. So far, no probe has stayed long enough to map out the details needed to see the full scope of the ring system. The paper’s authors and plenty of other researchers suggest that it’s time to send a probe to the ice giants to effectively map the ring systems, moons, and myriad other recently discovered objects that are so hard to observe from the Earth. But for now, that mission is still on the drawing board, so we’ll have to wait to fully understand the interiors and ring system of these cold, barren worlds. At least when we finally do send a probe out that way, we’ll have the mathematical framework to help shed light on these dark places.

Learn More:
A’Hearn et al – Ring Seismology of the Ice Giants Uranus and Neptune
UT – The Rings of Neptune
UT – Which Planets Have Rings?
UT – How Many Rings Does Uranus Have?

Lead Image:
Artist impression of Uranus and its rings.
Credit – NRAO / AUI / NSF / S. Dagnello

Adblock test (Why?)

Source link

Continue Reading