Apple on designing the A14 Bionic for the iPad Air and beyond - Engadget | Canada News Media
Connect with us

Tech

Apple on designing the A14 Bionic for the iPad Air and beyond – Engadget

Published

 on


When Apple announced the new iPad Air last month, the most interesting thing about it wasn’t its iPad Pro-inspired design or the bevy of new color options. No, it’s what the new Air had lurking inside that slim frame. 

To our surprise, the 2020 iPad Air was the first device announced by Apple to use the new A14 Bionic chipset. That silicon’s impact won’t be limited to tablets, either — it will almost certainly power the next generation of iPhones, which Apple will unveil on October 13th. In a conversation with Engadget, Tim Millet, Apple’s VP of platform architecture, and Tom Boger, senior director of Mac and iPad product marketing, shed some light on the company’s approach to designing the A14, and what it means for the iPad Air and beyond.

Building a beast

At a high level, the A14 seems similar to Apple’s other Bionic chipsets. This system-on-a-chip packs a six-core CPU — two cores high-performance cores and four for lower-priority tasks — just as the A12 and A13 did. The number of GPU cores here has also remained unchanged at four. Don’t be fooled by these passing similarities, though: Because the A14 was designed for a 5nm manufacturing process, there’s more going on in this system-on-a-chip than ever before. But let’s take a step back first. The shift to ever-denser chipset designs has been happening for years, and shows no sign of slowing.

The A14 might be the world’s first commercially available 5nm chip, but Apple’s rivals aren’t far behind. Qualcomm first 5nm mobile chipset, the Snapdragon 875, could debut as soon as December at the company’s virtual Snapdragon Summit. And then there’s Samsung, which — in addition to manufacturing those Snapdragons for Qualcomm — has begun pulling back the curtain on its 5nm Exynos 1080 chipset.

The main benefit of chips based on these new manufacturing processes is that they’re more densely packed with transistors, incredibly small switches that can control the flow of electrons. These serve as the foundation for logic gates, which beget integrated circuits, which beget full-blown processors.

In any case, the shift to 5nm meant Apple had far more transistors to devote to all the systems on the chip. Think: 11.8 billion, up from the 8.5 billion the company had to work with in last year’s A13 Bionic. As you’d expect, that huge uptick in transistor count gave Apple the extra processing bits needed to build significantly faster, more efficient CPU and GPU cores. But it also gave Apple the latitude to make more subtle improvements to a device’s overall experience.

“One of the ways chip architects think about features is not necessarily directly mapping [transistors] to a user feature in the product so much as enabling the underlying technology, like software in the graphics stack to be able to leverage a new capability in the GPU,” Millet said. “That will inevitably come as a visual feature in a game, or in a snappy transition in the user interface.”

The switch to a 5nm design for the A14 also gave Apple the latitude to devote more of its transistor “budget” to components beyond just the CPU and GPU. And when it comes to achieving the best all-around experience, companies like Apple, Samsung and Huawei — the only other companies to design chips for their own mobile devices — have a distinct advantage. In this case, because Apple exercises full control over what goes into its systems-on-chips, it can invest in additional processing cores and components before they go mainstream.

The best example is the company’s Neural Engine, a component that debuted in the iPhone X’s A11 chipset to accelerate the sorts of neural networks needed for features like secure face unlocking, voice recognition for Siri and augmented reality, among other things. Apple was among the first to integrate a dedicated neural accelerator into its chips — Huawei announced the Kirin 970 and its neural processing unit a week before Apple revealed its own Neural Engine, and Samsung and Qualcomm only caught up later.


Apple

Unsurprisingly, this year’s Neural Engine is a far cry from the first one we saw in 2017. While that original co-processor could perform 600 billion operations per second, last year’s A13 raised the bar to 6 trillion operations in the same amount of time. Meanwhile, the A14 generally obliterates the bar by performing a claimed 11 trillion operations per second.

That boost was made possible by a big redesign: The A14’s Neural Engine now packs 16 cores, compared to eight in last year’s A13. Doubling the engine’s core count was an interesting choice since many of the iOS features that relied on it already seemed to run well enough. Since that’s the case, why not instead devote more of those new transistors to further ramping up CPU and GPU performance, which most people may more immediately notice?

The answer is two-fold. For one, Apple continues to see huge potential in supercharging neural networks, not just for the sake of its own software experiences, but for the ones app developers might be able to achieve with the right components in place. The popular image editing app Pixelmator Pro, for instance, leans on the Neural Engine for a feature that makes low-resolution images look surprisingly crisp and clean. Meanwhile, on the other end of the creative spectrum, Algoriddim’s djay Pro AI app uses the Neural Engine to more capably isolate vocals and instrument tracks in songs.

“We saw the opportunity to do things that would have been impossible to do with a conventional CPU instruction set,” Millet said. “You could in theory do many of the things the Neural Engine does on a GPU, but you can’t do it inside of a tight, thermally constrained enclosure.”

And that’s a nice segue to the other half of the answer, which is that Apple had to balance sheer horsepower with efficiency. After all, there’s no point in making sure the horses run fast if they tire out too soon.

“We try to focus on energy efficiency, because that applies to every product that we build,” said Millet. By making that a fundamental focus of its chip designs, Apple doesn’t have to worry about a situation in which it “focused on energy efficiency for the phone [in a way] that’s not going to work in an iPad Air. Of course it’s going to work.”

Apple
Image credit: Apple

Practical impact

There’s little debate that the A14 is more impressive than its predecessors, but all of this raises an interesting question: How powerful is this thing, really?

It depends. Apple hasn’t yet issued claims about the A14 Bionic’s performance improvements over last year’s A13 Bionic — expect more on that during the company’s upcoming keynote. (A set of leaked benchmarks suggests some healthy gains over last year’s chipset, though some are less than impressed.) When Apple revealed the new iPad Air, though, it did say the A14’s CPU was up to 40 percent faster than the previous model, and that people could expect up to a 30 percent increase in graphics performance. 

It’s important to note, however, that real-life performance gains don’t always live up to Apple’s promises. When the company says the A14’s CPU is 30 percent more powerful than the current iPad Air’s A12 chipset, for instance, it isn’t going off results from popular benchmarking tools you and I have access to. According to Boger, those figures are an amalgamation of “real-world application workloads.” In other words, they’re composite numbers derived from many different performance factors — all to demonstrate what it’s like to actually use this thing.

“We understand that single-thread performance for a lot of applications is really important,” Millet added. “So we make sure that when we’re talking about things like that, we’re representing the single-thread performance well. We also represent that more forward-looking developers are actually taking advantage of the extra cores that are coming in.”

Chris Velazco/Engadget

Since I’ve spent a considerable chunk of 2020 testing Apple’s devices, my thoughts quickly pivoted to how the A14 may blur the boundary between the Air and the iPad Pros. After all, the 2020 iPad Pro relies on a souped-up variant of a two-year-old chipset. How does that stack up compared to Apple’s new silicon?

On the whole, the iPad Pro still has the edge. It was a blistering-fast machine when we tested it earlier this year, and Millet and Boger were quick to point out that the current model’s A12Z chipset has more CPU and GPU cores — eight of each — than the A14 does. That big difference in GPU computing power in particular means the iPad Pro will continue to be better suited for graphical work and the other “high-performance workloads” Apple’s pro users might deal with. But that’s not to say the iPad Air’s chipset is completely outgunned here.

“Because the A14 has our latest-generation CPU cores, you may see a few things here and there that the A14 could potentially outperform the A12Z in,” Boger noted. 

That Apple built a $600 tablet with the power to sometimes outperform its pro-level hardware is a big deal. What might be more important, however, is the effect Apple’s work in designing the A14 could have on the rest of its devices down the road.

Chris Velazco/Engadget
Image credit: Chris Velazco/Engadget

To the future

As I said earlier, the A14 will power the new iPad Air and likely the company’s latest slew of iPhones, but it’ll almost certainly wind up in other products too. Just look at Apple’s line of entry-level iPads: While they’ve never gotten the high-end chipset variants made for the iPad Pros, they’re frequently refreshed with silicon used in previous-generation iPhones. If you’re a fan of Apple’s devices, it doesn’t matter if you aren’t planning to splurge on a new phone or tablet just yet — there’s a decent chance you’ll eventually experience the A14. 

And even if you don’t, you may still benefit from some of the work that went into it.  When people at Apple start working on a chipset, they’re not solely focused on building one for a single product; they take into account the company’s entire lineup. “We spend a lot of time working with the product teams and software teams, and the architecture group really does sit in the center of that,” said Millet. In building a product, Apple has to wrangle a laundry list of important components, from the CPU and GPU to cameras and display modules and a bevy of sensors. Connecting all of them in ways that work well falls to Millet’s team, and one of their biggest priorities is making sure the chip-level architecture that weaves them all together is parameterized — that is, scalable for use in different kinds of devices. 

“Ultimately, we want to make sure that when we build a CPU for one generation, we’re not building it necessarily only for one,” he said. While that doesn’t mean you’ll see the A14’s six-core CPU in something like an Apple Watch, the architecture developed for the company’s flagship phone chipset may well be adapted and reused elsewhere. And as it turns out, we might not have to wait very long before to see a great example.

Apple

For weeks now, rumors of an iPad Pro powered by a high-performance version of the A14 called the A14X have continued to surface, with some suggesting a launch in early 2021. That alone isn’t unusual; Apple announced its third-generation iPad Pro and its A12X chipset just one month after releasing the A12-powered iPhone XS series. What’s more interesting — and this is the part you should take with a grain of salt — is that the A14X is also rumored to be the chipset inside the company’s first commercially available Apple Silicon Macs. Naturally, the company wouldn’t confirm any of this to me, but when asked about whether the company’s work on Mac chips influenced the A14’s development at all, Millet noted that “sometimes it’s the constraints of a unique platform that drive invention.”

Ultimately, there’s still a lot we don’t know about the A14 and Apple’s plans for it in the near future. How else will its architecture be expanded or constricted to work for differing hardware? Will what Apple learned from designing mobile chipsets like the A14 give it the tools it needs to take on Intel and AMD? Millet stopped short of discussing these topics in full, but one thing seems clear all the same: Whether or not you buy an iPad Air (or an iPhone 12, for that matter), the impact of Apple’s work on this chipset will be felt for years to come.

All products recommended by Engadget are selected by our editorial team, independent of our parent company. Some of our stories include affiliate links. If you buy something through one of these links, we may earn an affiliate commission.

Let’s block ads! (Why?)



Source link

Continue Reading

Tech

Ottawa orders TikTok’s Canadian arm to be dissolved

Published

 on

 

The federal government is ordering the dissolution of TikTok’s Canadian business after a national security review of the Chinese company behind the social media platform, but stopped short of ordering people to stay off the app.

Industry Minister François-Philippe Champagne announced the government’s “wind up” demand Wednesday, saying it is meant to address “risks” related to ByteDance Ltd.’s establishment of TikTok Technology Canada Inc.

“The decision was based on the information and evidence collected over the course of the review and on the advice of Canada’s security and intelligence community and other government partners,” he said in a statement.

The announcement added that the government is not blocking Canadians’ access to the TikTok application or their ability to create content.

However, it urged people to “adopt good cybersecurity practices and assess the possible risks of using social media platforms and applications, including how their information is likely to be protected, managed, used and shared by foreign actors, as well as to be aware of which country’s laws apply.”

Champagne’s office did not immediately respond to a request for comment seeking details about what evidence led to the government’s dissolution demand, how long ByteDance has to comply and why the app is not being banned.

A TikTok spokesperson said in a statement that the shutdown of its Canadian offices will mean the loss of hundreds of well-paying local jobs.

“We will challenge this order in court,” the spokesperson said.

“The TikTok platform will remain available for creators to find an audience, explore new interests and for businesses to thrive.”

The federal Liberals ordered a national security review of TikTok in September 2023, but it was not public knowledge until The Canadian Press reported in March that it was investigating the company.

At the time, it said the review was based on the expansion of a business, which it said constituted the establishment of a new Canadian entity. It declined to provide any further details about what expansion it was reviewing.

A government database showed a notification of new business from TikTok in June 2023. It said Network Sense Ventures Ltd. in Toronto and Vancouver would engage in “marketing, advertising, and content/creator development activities in relation to the use of the TikTok app in Canada.”

Even before the review, ByteDance and TikTok were lightning rod for privacy and safety concerns because Chinese national security laws compel organizations in the country to assist with intelligence gathering.

Such concerns led the U.S. House of Representatives to pass a bill in March designed to ban TikTok unless its China-based owner sells its stake in the business.

Champagne’s office has maintained Canada’s review was not related to the U.S. bill, which has yet to pass.

Canada’s review was carried out through the Investment Canada Act, which allows the government to investigate any foreign investment with potential to might harm national security.

While cabinet can make investors sell parts of the business or shares, Champagne has said the act doesn’t allow him to disclose details of the review.

Wednesday’s dissolution order was made in accordance with the act.

The federal government banned TikTok from its mobile devices in February 2023 following the launch of an investigation into the company by federal and provincial privacy commissioners.

— With files from Anja Karadeglija in Ottawa

This report by The Canadian Press was first published Nov. 6, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

Health

Here is how to prepare your online accounts for when you die

Published

 on

 

LONDON (AP) — Most people have accumulated a pile of data — selfies, emails, videos and more — on their social media and digital accounts over their lifetimes. What happens to it when we die?

It’s wise to draft a will spelling out who inherits your physical assets after you’re gone, but don’t forget to take care of your digital estate too. Friends and family might treasure files and posts you’ve left behind, but they could get lost in digital purgatory after you pass away unless you take some simple steps.

Here’s how you can prepare your digital life for your survivors:

Apple

The iPhone maker lets you nominate a “ legacy contact ” who can access your Apple account’s data after you die. The company says it’s a secure way to give trusted people access to photos, files and messages. To set it up you’ll need an Apple device with a fairly recent operating system — iPhones and iPads need iOS or iPadOS 15.2 and MacBooks needs macOS Monterey 12.1.

For iPhones, go to settings, tap Sign-in & Security and then Legacy Contact. You can name one or more people, and they don’t need an Apple ID or device.

You’ll have to share an access key with your contact. It can be a digital version sent electronically, or you can print a copy or save it as a screenshot or PDF.

Take note that there are some types of files you won’t be able to pass on — including digital rights-protected music, movies and passwords stored in Apple’s password manager. Legacy contacts can only access a deceased user’s account for three years before Apple deletes the account.

Google

Google takes a different approach with its Inactive Account Manager, which allows you to share your data with someone if it notices that you’ve stopped using your account.

When setting it up, you need to decide how long Google should wait — from three to 18 months — before considering your account inactive. Once that time is up, Google can notify up to 10 people.

You can write a message informing them you’ve stopped using the account, and, optionally, include a link to download your data. You can choose what types of data they can access — including emails, photos, calendar entries and YouTube videos.

There’s also an option to automatically delete your account after three months of inactivity, so your contacts will have to download any data before that deadline.

Facebook and Instagram

Some social media platforms can preserve accounts for people who have died so that friends and family can honor their memories.

When users of Facebook or Instagram die, parent company Meta says it can memorialize the account if it gets a “valid request” from a friend or family member. Requests can be submitted through an online form.

The social media company strongly recommends Facebook users add a legacy contact to look after their memorial accounts. Legacy contacts can do things like respond to new friend requests and update pinned posts, but they can’t read private messages or remove or alter previous posts. You can only choose one person, who also has to have a Facebook account.

You can also ask Facebook or Instagram to delete a deceased user’s account if you’re a close family member or an executor. You’ll need to send in documents like a death certificate.

TikTok

The video-sharing platform says that if a user has died, people can submit a request to memorialize the account through the settings menu. Go to the Report a Problem section, then Account and profile, then Manage account, where you can report a deceased user.

Once an account has been memorialized, it will be labeled “Remembering.” No one will be able to log into the account, which prevents anyone from editing the profile or using the account to post new content or send messages.

X

It’s not possible to nominate a legacy contact on Elon Musk’s social media site. But family members or an authorized person can submit a request to deactivate a deceased user’s account.

Passwords

Besides the major online services, you’ll probably have dozens if not hundreds of other digital accounts that your survivors might need to access. You could just write all your login credentials down in a notebook and put it somewhere safe. But making a physical copy presents its own vulnerabilities. What if you lose track of it? What if someone finds it?

Instead, consider a password manager that has an emergency access feature. Password managers are digital vaults that you can use to store all your credentials. Some, like Keeper,Bitwarden and NordPass, allow users to nominate one or more trusted contacts who can access their keys in case of an emergency such as a death.

But there are a few catches: Those contacts also need to use the same password manager and you might have to pay for the service.

___

Is there a tech challenge you need help figuring out? Write to us at onetechtip@ap.org with your questions.

Source link

Continue Reading

Tech

Google’s partnership with AI startup Anthropic faces a UK competition investigation

Published

 on

 

LONDON (AP) — Britain’s competition watchdog said Thursday it’s opening a formal investigation into Google’s partnership with artificial intelligence startup Anthropic.

The Competition and Markets Authority said it has “sufficient information” to launch an initial probe after it sought input earlier this year on whether the deal would stifle competition.

The CMA has until Dec. 19 to decide whether to approve the deal or escalate its investigation.

“Google is committed to building the most open and innovative AI ecosystem in the world,” the company said. “Anthropic is free to use multiple cloud providers and does, and we don’t demand exclusive tech rights.”

San Francisco-based Anthropic was founded in 2021 by siblings Dario and Daniela Amodei, who previously worked at ChatGPT maker OpenAI. The company has focused on increasing the safety and reliability of AI models. Google reportedly agreed last year to make a multibillion-dollar investment in Anthropic, which has a popular chatbot named Claude.

Anthropic said it’s cooperating with the regulator and will provide “the complete picture about Google’s investment and our commercial collaboration.”

“We are an independent company and none of our strategic partnerships or investor relationships diminish the independence of our corporate governance or our freedom to partner with others,” it said in a statement.

The U.K. regulator has been scrutinizing a raft of AI deals as investment money floods into the industry to capitalize on the artificial intelligence boom. Last month it cleared Anthropic’s $4 billion deal with Amazon and it has also signed off on Microsoft’s deals with two other AI startups, Inflection and Mistral.

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending

Exit mobile version