Are Chemical Rockets or Solar Sails Better to Return Resources from Asteroids?
Connect with us

Science

Are Chemical Rockets or Solar Sails Better to Return Resources from Asteroids?

Published

 on

If and when we ever get an asteroid mining industry off the ground, one of the most important decisions to be made in the structure of any asteroid mining mission would be how to get the resources back to where all of our other infrastructure is – somewhere around the Earth. That decision typically will focus on one of two propulsion methodologies – chemical rockets, such as those we already use to get us into space in the first place, or solar sails, which, while slower and unable to get us into orbit, don’t require any fuel. So, which propulsion methodology is better for these future missions? A study by researchers at the University of Glasgow looked at those two scenarios and came out with a clear-cut answer – solar sails.

 

When answering these types of theoretical questions, it is essential to impose limits on the answers. For example, billions of asteroids exist in the solar system, so it’s more realistic to only look at those known as Near Earth Asteroids (NEAs). But even so, there are over 30,000 known NEAs. It would have been impossible for lead author Merel Vergaaij, then a Ph.D. student at the University, and her colleagues to calculate optimized trajectories for each of them.

So they broke the area around Earth down into generalized orbital parameters – semi-major axis distance, eccentricity, and inclination. With those three parameters, it is easier to get a handle on what a general transfer orbit would look like to a given asteroid in that region of space, some of which would be quite close to Earth on its orbital path.

 

Other constraints were also necessary – such as calculating only the cost and benefit of transferring material back from the asteroid, not the mining of the asteroid itself. Getting the mining equipment there and set up was considered beyond the scope of this paper. Moreover, there needed to be a wait time at the asteroid itself so the return mission could have time to stock up on the material it would be carrying.

That material, in this calculation, was volatiles. Volatiles, such as water, have been a focal point of asteroid mining discussions, as they form the basis of rocket fuel that would be needed to explore farther into the solar system and cost a lot of money to bring up from Earth itself. Moreover, chemical rockets can then use some of those volatiles as their own fuel to make their way back to the Earth system.

A few more constraints fell into place, including sending the volatiles back to geostationary orbit (GEO), some assumptions about launch costs based on the projected costs of Starship, and determining that all-important metric of economic studies – the net present value (NPV). NPV is the outcome that the solutions would be judged on and based on various calculated factors. These would include a variety of costs, such as launch cost, development cost, manufacturing cost, and operational cost. The revenue would be calculated based on the expected value of the volatiles delivered to orbit. When the revenue exceeds the cost of the mission, the NPV turns positive, which, in this case, indicates whether a mission to an asteroid in that area would be worth it.

To make that determination, the authors used a technique called a genetic algorithm to solve an optimization problem. Essentially, they gave the algorithm a bunch of parameters, such as the orbital mechanics, masses of the spacecraft, and the amount of volatiles returned and told the algorithm to optimize the all-important NPV value. The algorithm’s outcome was very clear – solar sails have positive NPVs for a wider variety of areas located in near-Earth space.

Primarily this was due to some weaknesses in chemical rockets. They had to use some of their delivered material to get back to GEO. And, while the time for their transfer orbit was shorter, another factor of the NPV, the discount rate, which lowers the amount of expected value of a resource the farther in the future it is sold, doesn’t take enough out of the value of that which the solar sail can bring back that would make it on par with the chemical rocket.

There were still some areas of near-Earth space that even solar sails were not profitable in, so the authors suggest that future asteroid miners look at asteroids in the specific regions they call out as potentially profitable if they are looking for their first major mining site. In addition, the researchers made some modifications to their original baseline missions structure, such as stopping at a Lunar Gateway, adding a second trip, and running a series of variable simulations, known as Monte Carlo simulations, that would test the extent to which these different schemes were profitable.

The volatiles returned from the asteroid would be used for orbital refueling, as described in this UT video.

Both adding a second trip and stopping off at the Lunar Gateway rather than GEO added significant value to each type of mission architecture. The Monte Carlo simulations also showed that their profitability was consistent with slight input costs and output revenue variations. Overall, while there are potentially profitable targets for each type of propulsion system, it seems that solar sails are clearly the winner between the two. Now it’s up to those who hope to build the first asteroid mining empire to listen.

 

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending

Exit mobile version