adplus-dvertising
Connect with us

Science

ATLANTIC SKIES: How bright do the stars shine? The magnitude system explained – SaltWire Network

Published

 on


Some of my readers have queried me as to why the brighter objects in the night sky have negative magnitude values, while the fainter ones have positive values, when, logically (at least to them), it should be the other way around.

For this seemingly “backward” rating system, we can thank the ancient Greek astronomer Hipparchus, who, in 129 BC, drew up the first recognized star chart. On this chart, he listed the magnitude (from Latin magnitudo or magnus meaning “great”) of the stars he could see in the night sky. Hipparchus listed the brightest stars that he could see with his naked eye as magnitude +1.0 stars, those half as bright as the magnitude +1.0 stars as magnitude 2.0 stars, and so on, until reaching magnitude +6.0, the faintest he could see.

His magnitude scale remained in use for rating the brightness of the stars (and other celestial objects by comparison) for the next 1,400 years. It wasn’t until 1609, when Italian astronomer Galileo (1564-1642) developed his first telescope and observed much fainter stars than those listed on the star charts in use at that time, that the magnitude scale was extended (with ascending positive numbers) to include the fainter stars.

300x250x1

In the mid-1850s, when astronomers discovered that some magnitude +1.0 stars are brighter than others, the scale was again extended outward, this time with ascending negative values to reflect the brighter stars.

The stars Rigel (Orion), Capella (Auriga), Arcturus (Bootes), and Vega (Lyra) were listed at magnitude 0.0, while stars brighter than these were given negative values. Sirius, the brightest star in the night sky, is rated at magnitude -1.43 , while our sun is rated at magnitude -26.7.

Planets and other celestial objects can also be rated on the magnitude scale. Venus, at its brightest, shines at magnitude -4.4, while the full moon beams (on average) at magnitude -12.6.

The faintest stars that the average human, naked-eye can see (under a clear sky from a dark site) is magnitude +6.0, while binoculars can boost that to magnitude +10. In contrast, the Hubble Space Telescope can see stars as faint as magnitude +30.

With stronger telescopes, the magnitude scale for stars was again adjusted.

 

What does it mean?

A star’s apparent brightness or luminosity refers to the amount of light energy (from thermonuclear fusion within the star’s core) it emits, and how much of that energy passes per second through a square meter of the star’s surface area. Basically, how bright a star appears depends on how much of its light energy per second strikes the area of a light detector (in our case, the human eye). The apparent brightness we see or measure is inversely proportional to the square of our distance from the star, with the apparent brightness diminishing as the distance squares.

Astronomers use the terms “apparent magnitude” and “absolute magnitude” when denoting a star’s brightness. Apparent magnitude is how bright the star appears to an Earth-bound observer, and is directly related to a star’s apparent brightness.

Stellar measurements in the 19th century indicated that magnitude +1.0 stars are approximately 100 times brighter than magnitude +6.0 stars (i.e., it would take 100 magnitude +6.0 stars to provide as much light as a single magnitude +1.0 star). Subsequently, the stellar magnitude scale was modified so that a magnitude difference of five corresponded exactly to a factor of 100 times difference in brightness., while a difference of one magnitude equaled a difference factor of 2.512 in brightness.

This resulting stellar magnitude rating system was based on a logarithmic scale, with whole numbers, and fractions thereof, indicating varying ratios of brightness (e.g., 0 = 1 to 1; 0.2 = 1.2 to 1; 0.5 = 1.6 to 1; 1 = 2.5 to 1; 5 = 100 to 1, etc.). A star’s apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any dimness of the star’s light caused by the interference of interstellar dust along the line of sight of the observer.

When astronomers want to measure how intrinsically bright a star is regardless of its distance from Earth, they measure the star’s absolute magnitude, or its apparent magnitude if all the stars it is being compared to were placed at 10 parsecs distance from Earth. With one parsec equaling 3.26 light-years (a light-year is the distance light travels through the vacuum of space in one year; approximately 10 trillion kilometres), 10 parsecs equals 32.6 light-years, or approximately 100 trillion kms. A star’s absolute magnitude measures its true energy output (its luminosity).

As with the apparent magnitude scale, the absolute magnitude scale is also “backward”, giving less luminous stars ascending positive values, and more luminous stars ascending negative ones. For celestial objects such as comets and asteroids, the absolute magnitude scale (also with positive through negative values) is based on how bright the object would appear to an observer standing on the sun if the object were 1 AU (149,597,871 kms) away.

This week’s sky

Mercury (magnitude -0.8) is visible low (about eight degrees) above the northwest horizon shortly after 9 p.m., before dropping from view shortly after 10 p.m. This bright but small planet (heading towards its greatest eastern elongation from the sun on June 2) achieves an altitude of 18 degrees in the evening sky by May 31. It reaches its half-phase (called dichotomy) on May 29.

Venus (magnitude -4.3) appears only about 13 degrees above the western horizon shortly after 9 p.m., before setting shortly before 11 p.m.

Jupiter (magnitude -2.5) rises in the southeastern sky shortly before 1 a.m., reaching 22 degrees height in the southern sky before fading from view around 5:15 a.m.

Saturn (magnitude +0.48) follows Jupiter into the southeastern dawn sky around 1 a.m., rising to about 23 degrees above the southern horizon before it fades from sight shortly before 5 a.m.

Mars (magnitude +0.16) rises in the southeast around 2:30 a.m., reaching an altitude of about 20 degrees above the horizon before fading from view a few minutes before 5 a.m.

Currently at magnitude +4.5, Comet C/2020 F8 SWAN is now in the constellation of Perseus – the Warrior Prince. This fading comet will be difficult to see, as it reaches an altitude of only about 10 degrees above the northeastern horizon between 4 a.m. and 5 a.m., before the glow of the rising sun overtakes it. With clear skies and an unobstructed view of the northeastern horizon, it might still be seen in binoculars and small scopes.

Until next week, clear skies.


Events:

May 29 – Mercury reaches dichotomy

May 30 – First quarter moon

Glenn K. Roberts lives in Stratford, P.E.I., and has been an avid amateur astronomer since he was a small child. He welcomes comments from readers, and anyone who would like to do so is encouraged to email him at glennkroberts@gmail.com.

RELATED:

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

Science

NASA hears from Voyager 1, the most distant spacecraft from Earth, after months of quiet

Published

 on

 

CAPE CANAVERAL, Fla. (AP) – NASA has finally heard back from Voyager 1 again in a way that makes sense.

The most distant spacecraft from Earth stopped sending back understandable data last November. Flight controllers traced the blank communication to a bad computer chip and rearranged the spacecraft’s coding to work around the trouble.

NASA’s Jet Propulsion Laboratory in Southern California declared success after receiving good engineering updates late last week. The team is still working to restore transmission of the science data.

300x250x1

It takes 22 1/2 hours to send a signal to Voyager 1, more than 15 billion miles (24 billion kilometers) away in interstellar space. The signal travel time is double that for a round trip.

Contact was never lost, rather it was like making a phone call where you can’t hear the person on the other end, a JPL spokeswoman said Tuesday.

Launched in 1977 to study Jupiter and Saturn, Voyager 1 has been exploring interstellar space – the space between star systems – since 2012. Its twin, Voyager 2, is 12.6 billion miles (20 billion kilometers) away and still working fine.

 

728x90x4

Source link

Continue Reading

Science

SpaceX launches 23 Starlink satellites from Florida (photos)

Published

 on

SpaceX sent yet another batch of its Starlink internet satellites skyward today (April 23).

A Falcon 9 rocket topped with 23 Starlink spacecraft lifted off from Florida’s Cape Canaveral Space Force Station today at 6:17 p.m. EDT (2217 GMT).

The Falcon 9’s first stage came back to Earth for a vertical landing about 8.5 minutes after launch as planned. It touched down on the SpaceX droneship Just Read the Instructions, which was stationed in the Atlantic Ocean.

It was the ninth launch and landing for this particular booster, according to a SpaceX mission description. Five of its previous eight liftoffs were Starlink missions.

300x250x1

The Falcon 9’s upper stage will continue carrying the 23 Starlink satellites toward low Earth orbit (LEO) today, deploying them about 65 minutes after liftoff.

This evening’s launch was the 41st of the year for SpaceX, and the 28th of 2024 dedicated to building out the huge and ever-growing Starlink megaconstellation. There are nearly 5,800 operational Starlink satellites in LEO at the moment, according to astrophysicist and satellite tracker Jonathan McDowell.

The Starlink launch ended up being the first half of a spaceflight doubleheader: A Rocket Lab Electron vehicle launched two satellites, including a NASA solar-sailing technology demonstrator, from New Zealand today at 6:33 p.m. EDT (2233 GMT).

Editor’s note: This story was updated at 6:30 p.m. ET on April 23 with news of successful launch and first-stage landing.

 

728x90x4

Source link

Continue Reading

Science

Exploring ecological networks in a digital world | News | Vancouver Island University | Canada – Vancouver Island University News

Published

 on


Getting to know Samantha Letourneau

By day, Samantha Letourneau is Vancouver Island University’s Canada Learning Bond project lead and Volunteer Tutor Coordinator. She’s also a musician and dancer and for the past two years, she’s been collaborating with Swedish artist Mårten Spångberg, thanks to funding obtained through Crimson Coast Dance, to create a digital art installation that goes live on Friday, April 26. A launch event takes place at Black Rabbit restaurant in the Old City Quarter that night. Samantha is also hosting a creative process workshop on April 27 and 28.

Can you share a bit about your background as an artist and how you got into it?

I have been working in art for a very long time, as a musician and dancer as well as an art administrator and program coordinator. I started music at the age of 11 and dance came later in my life in my early 20s. I always wanted to do dance, but I grew up in a small community in Yellowknife and at that time the only dance classes available were highland dancing, which I was not very interested in. 

In my early 20s while living in Vancouver, I took classes in contemporary dance and was fortunate to land a small part in the Karen Jameison Dance company for a piece called The River. The River was about rivers and connection between the reality of a real and physical outdoor river and the different reality of “the river within.” It was both a piece of art and outreach for the community. It included working with the S’pak’wus Slu’lum Dancers of the Squamish Nation. Somewhat ground-breaking for 1998.

300x250x1

From there I was hooked and wanted to do more in dance. I studied a lot and took many classes. Fast forward to now, I have been involved with productions and performances with Crimson Coast Dance for more than 15 years and greatly appreciate the talent and innovation that Artistic Director Holly Bright has brought to this community. She is amazing and very supportive of artists in Nanaimo.

How did this international exchange come about?

The Nordic/Nanaimo exchange is one of the innovative projects Holly created. At the height of the pandemic, funded by BC Arts Council and Made In BC, Crimson Coast Dance embarked on a project that explored the ways in which Nanaimo artists could participate in online exchanges. 

Two artists in Nanaimo – myself and Genevieve Johnson – were introduced to artists from Europe and supported through this international exchange. My collaborator, Mårten Spångberg, is a Swedish artist living and working in Berlin. An extension of that exchange is funded by Canada Council for the Arts – Digital Now.

What brought Mårten and myself together – and I quote Mårten here – is “questions around climate change, ecology and the influence contemporary society has on its environments. We are not interested in making art about the ecological crises or informing our audience about the urgency that climate change implies, but instead through our research develop work that in itself proposes, practices and engages in alternative ecologies.”

We share an understanding that art is a unique place, in the sense of practice, activation, performance and event, through which alternative ecologies can emerge and be probed and analyzed.

Tell us about the launch event.

We are launching the digital art installation that Mårten and I created on April 26 at The Attic at Black Rabbit Restaurant. The event is free to attend but people must sign up as seating is limited. I produced video art with soundscapes that I recorded mixing field recordings with voice and instrumentation. Marten explores text, imagery and AI.

My focus is on the evolving and ongoing process of how we communicate with each other and to nature within a digital context.

During our collaboration, Mårten and I talked about networks, though not just the expansive digital network of the internet but of nature. We shared thoughts on mycelium, a network of fungal threads or hyphae, that lately has received much attention on the importance of its function for the environment, including human beings.

Building off this concept, ideas of digital and ecological landscapes being connected emerged. From this we worked both collaboratively and individually to produce material for this digital project. Mårten will be there via Zoom as well and we will talk about this two-year process and the work we created together.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending