Biosimilar mRNA Vaccines, Part 1: Regulatory Revolution! - The Center for Biosimilars | Canada News Media
Connect with us

Health

Biosimilar mRNA Vaccines, Part 1: Regulatory Revolution! – The Center for Biosimilars

Published

 on


The COVID-19 pandemic has brought a remarkable shift in how we will prevent infections and autoimmune disorders in the future. The nucleic acid vaccines, including messenger RNA (mRNA) and DNA vaccines, have been under development for decades, but there was no opportunity to test their safety and efficacy; vaccines may take years and decades to provide sufficient proof of safety and efficacy. Then came COVID-19, caused by the SARS-CoV-2 virus. Fast data collection became possible because the virus was so widespread. Even with small infection numbers (n = 150) among study populations that averaged about 30,000 to 40,000, it was clear that mRNA vaccine efficacy was surprisingly high: 95% or better. The FDA would have approved the use of the mRNA vaccine at even at 50% efficacy.

The safety of the mRNA vaccines was confirmed clearly in multiple studies across the globe. However, not all COVID-19 vaccines fared well. The third mRNA vaccine, by CureVac, failed because its developers chose not to follow the teachings of the common wisdom. mRNA vaccines work by introducing a harmless piece of the virus into the body and triggering an immune response that conditions the body to recognize and attack the true virus. Moderna and Pfizer–BioNTech vaccines use modified RNA (pseudouridine); CureVac chose not to modify the RNA, and its vaccine uses normal uridine. It produced lower levels of antibodies than the Moderna and Pfizer-BioNTech vaccines and was just 47% effective at preventing COVID-19 infection. Incidentally, the name Moderna comes from “modified RNA.”

The Chinese Sinopharm vaccine, a traditional inactivated virus vaccine, also failed. This failure brought great misery because the Chinese government had used this vaccine as a diplomacy tool, supplying billions of doses to developing countries. As of today, none of the non-mRNA COVID-19 vaccines have come close to the efficacy of the mRNA vaccines.

We have 2 mRNA vaccines approved under Emergency Use Authorization (BNT162b2, mRNA-1273/NAID), and I anticipate their full approval soon. Pfizer has filed for the modification of storage temperature, and Moderna has filed for the reduction of dose; the Pfizer dose is 30 mcg, and the Moderna dose, 100 mcg. There are now newer lipid nanoparticle (LNP) formulations that can provide better temperature stability allowing only refrigeration storage.

Incidentally, Moderna has permitted the use of its patented LNP technologies to any company. Although the challenges to overcome IP issues remain, the humanitarian considerations make these challenges manageable. The US government has proposed to remove patent exclusivity relating to the COVID-19 vaccines. This action will require EU cooperation that is yet to come. However, as a patent law practitioner, I am confident that we can make COVID-19 vaccines without any patent infringement that remains in our way. mRNA vaccines have been under development for decades, so much of the base technology is already in the public domain. Both Pfizer and Moderna have shared their clinical protocol, and that is a rare event, as these protocols cost millions to produce and billions to execute. No other vaccine developer has shared these protocols in public. The mRNA vaccine developers now have a clear understanding of the regulatory process required to approve new mRNA vaccines.

Regulatory Pathway

At the time of the enactment of the Biologics Price Competition and Innovation Act (BPCIA, 2010), there was no indication that the introduction of mRNA vaccines would create a dilemma for the FDA in deciding an appropriate regulatory pathway.

The FDA’s Center for Biologics Evaluation and Research (CBER) jurisdiction includes biological products such as prophylactic and therapeutic vaccines, whole blood and blood products, cellular products and exosomal preparations, gene therapies, tissue products, and live biotherapeutic agents. CBER also regulates selected drugs and devices used to test and manufacture our biological products. In keeping with that mission, product approval applications filed with CBER include 351(a) filings, which are for “standalone” or original products, rather than biosimilars (21 Code of Federal Regulations [CFR] 601.2). The biologics license application (BLA) is regulated under 21 CFR 600 – 680.

Many biological products are controlled by the Center for Drug Evaluation and Research (CDER), including biosimilar and interchangeable biologics. For example, in March 2020, insulin, glucagon, and human growth hormone regulated as drugs under the Food, Drug, and Cosmetic Act came into the CDER BLA program.

mRNA vaccines have a unique feature: They are manufactured chemically, not biologically, as are many other vaccines. As a result, the vaccine structure is completely known, unlike the therapeutic proteins. The variations in the secondary and tertiary structures and post-expression modifications require intensive evaluation of similarity to allow them a biosimilar status. A proposed biosimilar mRNA vaccine can provide a 100% match for a reference product sequence. Thus, mRNA vaccines are closer to generic chemical products than biological therapeutic proteins.

In my opinion, the traditional vaccines can stay within the jurisdiction of CBER, and the chemically synthesized vaccines be approved under BLA by CDER under the 351(k) filing where suitable.

Already, the FDA has issued a final guideline (February 2021) on the development of products for the treatment and prevention of COVID-19, which states:

“COVID-19 vaccine development may be accelerated based on knowledge gained from similar products manufactured with the same well-characterized platform technology, to the extent legally and scientifically permissible. Similarly, with appropriate justification, some aspects of manufacture and control may be based on the vaccine platform, and in some instances, reduce the need for product-specific data. Therefore, FDA recommends that vaccine manufacturers engage in early communications with [Office of Vaccines Research and Review] to discuss the type and extent of chemistry, manufacturing, and control information needed for development and licensure of their COVID-19 vaccine.”

This statement can be construed as pointing to the possibility of a biosimilar application filing for a licensed (BLA) product to meet all requirements of the BPCIA. If the sequence of a biosimilar mRNA vaccine matches a reference product sequence, then the need for extensive toxicology and efficacy testing can be reduced, on a case-by-case basis, depending on other factors of variation. In my earlier conversation with the FDA, I appreciated the broad encouragement I received to discuss the development plan in a Type B meeting first, where the possibilities of a modified 351(a) filing or a 351(k) filing for a biosimilar mRNA vaccine can be discussed; the 351(a) modified approach will be analogous to a 505(b)(2) new drug application under the FDC Act. I will keep my readers informed of any new indications from the FDA.

mRNA vaccines are now at the forefront of hundreds of possibilities, including preventing infections to preventing autoimmune disorders. Since the antigens focused on the design of mRNA vaccines cannot be patented, a biosimilar vaccine product may likely produce the product without any infringement issue. The testing proposal presented above will help expedite the approval of biosimilars without risking the safety and efficacy of biosimilar products.

For the first time, we have a scientific challenge to meet: how to classify mRNA vaccines as chemical drugs or as biosimilars rather than standalone biologics?

In contrast to chemically synthesized small molecular weight drugs, which have a well-defined structure and can be thoroughly characterized, biological products generally derived from living material (humans, animals, or microorganisms) are complex in structure and, thus, are usually not fully characterized. However, this last consideration does not apply to mRNA vaccines.

To promote the idea of creating a new category of products, biosimilar vaccines, I have filed a citizen petition to the FDA advising the agency on creating new guidance for this new class of biosimilar products. In my opinion, the agency will agree to many of my suggestions because the issue of structural similarity with a reference product is no longer an issue. Preclinical toxicology studies can be waived based on in vitro and situ studies, requiring only comparable antibody production in animal species. The immunogenicity—stimulation of immune response—is not a significant issue because vaccines are supposed to be antigenic. A limited trial in animal species capable of showing antibody response that is comparable to findings with the reference mRNA vaccine will suffice to establish equivalent safety with the reference product.

I have also developed several mRNA vaccines, including COVID-19, flu, HPV, HIV, and tuberculosis, that are under advanced stages of development across the globe, including one with a biosimilar status. Today, the world needs about 8 billion doses of COVID-19 vaccines that work. I have concluded that we can make 1 billion doses using 30 L bioreactors in 6 months with our cost of goods not exceeding $0.50 per dose in bulk and $0.90 in final packaging if the vaccine is manufactured in the United States; the costs can be lower if manufactured in developing countries. For example, the cost of Moderna single dose is $32 to $37, and Pfizer’s, $22 in final packaging. I can confirm these costs of manufacturing that make the commercial manufacturing of COVID-19 vaccines a highly profitable project.

While there is an excess of COVID-19 vaccine in the United States, the rest of the world is still starving for it. The WHO has also told me that the world needs 8 billion doses of COVID-19 vaccines and that they will be very proactive if anyone can supply the mRNA vaccines; the trust in all other vaccines has declined. This is a remarkable business opportunity for many companies since the capital expenditures (CAPEX) and operating expenditures (OPEX) are very small. In my next article on the topic, I will provide details of strategies to take the mRNA vaccines to market fast and reduce CAPEX and OPEX significantly. I want to enable newcomers to appreciate that mRNA technology will revolutionize health care, and there are many opportunities to join this revolution.

Summary

mRNA vaccines are chemically derived and have fixed chemical structures; it is possible to fully replicate a reference product sequence, reducing the burden of proving biosimilarity required for therapeutic proteins. The FDA has already suggested a new pathway for mRNA vaccines, but this path will only come into being when enough companies join in taking steps toward this strategy.

Watch for the second article in this series: Biosimilar mRNA Vaccines—Fast-to-Market Strategies.

Adblock test (Why?)



Source link

Continue Reading

Health

What’s the greatest holiday gift: lips, hair, skin? Give the gift of great skin this holiday season

Published

 on

Give the gift of great skin this holiday season

Skinstitut Holiday Gift Kits take the stress out of gifting

Toronto, October 31, 2024 – Beauty gifts are at the top of holiday wish lists this year, and Laser Clinics Canada, a leader in advanced beauty treatments and skincare, is taking the pressure out of seasonal shopping. Today, Laser Clincs Canada announces the arrival of its 2024 Holiday Gift Kits, courtesy of Skinstitut, the exclusive skincare line of Laser Clinics Group.

In time for the busy shopping season, the limited-edition Holiday Gifts Kits are available in Laser Clinics locations in the GTA and Ottawa. Clinics are conveniently located in popular shopping centers, including Hillcrest Mall, Square One, CF Sherway Gardens, Scarborough Town Centre, Rideau Centre, Union Station and CF Markville. These limited-edition Kits are available on a first come, first served basis.

“These kits combine our best-selling products, bundled to address the most relevant skin concerns we’re seeing among our clients,” says Christina Ho, Senior Brand & LAM Manager at Laser Clinics Canada. “With several price points available, the kits offer excellent value and suit a variety of gift-giving needs, from those new to cosmeceuticals to those looking to level up their skincare routine. What’s more, these kits are priced with a savings of up to 33 per cent so gift givers can save during the holiday season.

There are two kits to select from, each designed to address key skin concerns and each with a unique theme — Brightening Basics and Hydration Heroes.

Brightening Basics is a mix of everyday essentials for glowing skin for all skin types. The bundle comes in a sleek pink, reusable case and includes three full-sized products: 200ml gentle cleanser, 50ml Moisture Defence (normal skin) and 30ml1% Hyaluronic Complex Serum. The Brightening Basics kit is available at $129, a saving of 33 per cent.

Hydration Heroes is a mix of hydration essentials and active heroes that cater to a wide variety of clients. A perfect stocking stuffer, this bundle includes four deluxe products: Moisture 15 15 ml Defence for normal skin, 10 ml 1% Hyaluronic Complex Serum, 10 ml Retinol Serum and 50 ml Expert Squalane Cleansing Oil. The kit retails at $59.

In addition to the 2024 Holiday Gifts Kits, gift givers can easily add a Laser Clinic Canada gift card to the mix. Offering flexibility, recipients can choose from a wide range of treatments offered by Laser Clinics Canada, or they can expand their collection of exclusive Skinstitut products.

 

Brightening Basics 2024 Holiday Gift Kit by Skinstitut, available exclusively at Laser Clincs Canada clinics and online at skinstitut.ca.

Hydration Heroes 2024 Holiday Gift Kit by Skinstitut – available exclusively at Laser Clincs Canada clinics and online at skinstitut.ca.

Continue Reading

Health

Here is how to prepare your online accounts for when you die

Published

 on

 

LONDON (AP) — Most people have accumulated a pile of data — selfies, emails, videos and more — on their social media and digital accounts over their lifetimes. What happens to it when we die?

It’s wise to draft a will spelling out who inherits your physical assets after you’re gone, but don’t forget to take care of your digital estate too. Friends and family might treasure files and posts you’ve left behind, but they could get lost in digital purgatory after you pass away unless you take some simple steps.

Here’s how you can prepare your digital life for your survivors:

Apple

The iPhone maker lets you nominate a “ legacy contact ” who can access your Apple account’s data after you die. The company says it’s a secure way to give trusted people access to photos, files and messages. To set it up you’ll need an Apple device with a fairly recent operating system — iPhones and iPads need iOS or iPadOS 15.2 and MacBooks needs macOS Monterey 12.1.

For iPhones, go to settings, tap Sign-in & Security and then Legacy Contact. You can name one or more people, and they don’t need an Apple ID or device.

You’ll have to share an access key with your contact. It can be a digital version sent electronically, or you can print a copy or save it as a screenshot or PDF.

Take note that there are some types of files you won’t be able to pass on — including digital rights-protected music, movies and passwords stored in Apple’s password manager. Legacy contacts can only access a deceased user’s account for three years before Apple deletes the account.

Google

Google takes a different approach with its Inactive Account Manager, which allows you to share your data with someone if it notices that you’ve stopped using your account.

When setting it up, you need to decide how long Google should wait — from three to 18 months — before considering your account inactive. Once that time is up, Google can notify up to 10 people.

You can write a message informing them you’ve stopped using the account, and, optionally, include a link to download your data. You can choose what types of data they can access — including emails, photos, calendar entries and YouTube videos.

There’s also an option to automatically delete your account after three months of inactivity, so your contacts will have to download any data before that deadline.

Facebook and Instagram

Some social media platforms can preserve accounts for people who have died so that friends and family can honor their memories.

When users of Facebook or Instagram die, parent company Meta says it can memorialize the account if it gets a “valid request” from a friend or family member. Requests can be submitted through an online form.

The social media company strongly recommends Facebook users add a legacy contact to look after their memorial accounts. Legacy contacts can do things like respond to new friend requests and update pinned posts, but they can’t read private messages or remove or alter previous posts. You can only choose one person, who also has to have a Facebook account.

You can also ask Facebook or Instagram to delete a deceased user’s account if you’re a close family member or an executor. You’ll need to send in documents like a death certificate.

TikTok

The video-sharing platform says that if a user has died, people can submit a request to memorialize the account through the settings menu. Go to the Report a Problem section, then Account and profile, then Manage account, where you can report a deceased user.

Once an account has been memorialized, it will be labeled “Remembering.” No one will be able to log into the account, which prevents anyone from editing the profile or using the account to post new content or send messages.

X

It’s not possible to nominate a legacy contact on Elon Musk’s social media site. But family members or an authorized person can submit a request to deactivate a deceased user’s account.

Passwords

Besides the major online services, you’ll probably have dozens if not hundreds of other digital accounts that your survivors might need to access. You could just write all your login credentials down in a notebook and put it somewhere safe. But making a physical copy presents its own vulnerabilities. What if you lose track of it? What if someone finds it?

Instead, consider a password manager that has an emergency access feature. Password managers are digital vaults that you can use to store all your credentials. Some, like Keeper,Bitwarden and NordPass, allow users to nominate one or more trusted contacts who can access their keys in case of an emergency such as a death.

But there are a few catches: Those contacts also need to use the same password manager and you might have to pay for the service.

___

Is there a tech challenge you need help figuring out? Write to us at onetechtip@ap.org with your questions.

Source link

Continue Reading

Health

Pediatric group says doctors should regularly screen kids for reading difficulties

Published

 on

 

The Canadian Paediatric Society says doctors should regularly screen children for reading difficulties and dyslexia, calling low literacy a “serious public health concern” that can increase the risk of other problems including anxiety, low self-esteem and behavioural issues, with lifelong consequences.

New guidance issued Wednesday says family doctors, nurses, pediatricians and other medical professionals who care for school-aged kids are in a unique position to help struggling readers access educational and specialty supports, noting that identifying problems early couldhelp kids sooner — when it’s more effective — as well as reveal other possible learning or developmental issues.

The 10 recommendations include regular screening for kids aged four to seven, especially if they belong to groups at higher risk of low literacy, including newcomers to Canada, racialized Canadians and Indigenous Peoples. The society says this can be done in a two-to-three-minute office-based assessment.

Other tips encourage doctors to look for conditions often seen among poor readers such as attention-deficit hyperactivity disorder; to advocate for early literacy training for pediatric and family medicine residents; to liaise with schools on behalf of families seeking help; and to push provincial and territorial education ministries to integrate evidence-based phonics instruction into curriculums, starting in kindergarten.

Dr. Scott McLeod, one of the authors and chair of the society’s mental health and developmental disabilities committee, said a key goal is to catch kids who may be falling through the cracks and to better connect families to resources, including quicker targeted help from schools.

“Collaboration in this area is so key because we need to move away from the silos of: everything educational must exist within the educational portfolio,” McLeod said in an interview from Calgary, where he is a developmental pediatrician at Alberta Children’s Hospital.

“Reading, yes, it’s education, but it’s also health because we know that literacy impacts health. So I think that a statement like this opens the window to say: Yes, parents can come to their health-care provider to get advice, get recommendations, hopefully start a collaboration with school teachers.”

McLeod noted that pediatricians already look for signs of low literacy in young children by way of a commonly used tool known as the Rourke Baby Record, which offers a checklist of key topics, such as nutrition and developmental benchmarks, to cover in a well-child appointment.

But he said questions about reading could be “a standing item” in checkups and he hoped the society’s statement to medical professionals who care for children “enhances their confidence in being a strong advocate for the child” while spurring partnerships with others involved in a child’s life such as teachers and psychologists.

The guidance said pediatricians also play a key role in detecting and monitoring conditions that often coexist with difficulty reading such as attention-deficit hyperactivity disorder, but McLeod noted that getting such specific diagnoses typically involves a referral to a specialist, during which time a child continues to struggle.

He also acknowledged that some schools can be slow to act without a specific diagnosis from a specialist, and even then a child may end up on a wait list for school interventions.

“Evidence-based reading instruction shouldn’t have to wait for some of that access to specialized assessments to occur,” he said.

“My hope is that (by) having an existing statement or document written by the Canadian Paediatric Society … we’re able to skip a few steps or have some of the early interventions present,” he said.

McLeod added that obtaining specific assessments from medical specialists is “definitely beneficial and advantageous” to know where a child is at, “but having that sort of clear, thorough assessment shouldn’t be a barrier to intervention starting.”

McLeod said the society was partly spurred to act by 2022’s “Right to Read Inquiry Report” from the Ontario Human Rights Commission, which made 157 recommendations to address inequities related to reading instruction in that province.

He called the new guidelines “a big reminder” to pediatric providers, family doctors, school teachers and psychologists of the importance of literacy.

“Early identification of reading difficulty can truly change the trajectory of a child’s life.”

This report by The Canadian Press was first published Oct. 23, 2024.

Source link

Continue Reading

Trending

Exit mobile version