Canadian astronomers champing at the bit for release of 1st images from James Webb telescope - CBC News | Canada News Media
Connect with us

Science

Canadian astronomers champing at the bit for release of 1st images from James Webb telescope – CBC News

Published

 on


Roughly 13.8 billion years ago, the groundwork to everything we are, everything we’ve come to understand, was born.

Most people know that event as the Big Bang, but the creation of what we see today took time. Lots of it. Over billions of years it transformed from a place of high density and temperature, then expansion and then cooling. Eventually the simplest of elements formed, like hydrogen and helium, still the most abundant elements in our universe.

The first stars ignited, piercing through the swampy darkness. Then they clumped together to form galaxies, islands of stars in this dark void, even superclusters of hundreds to thousands of galaxies all linked together. Supernovas — violent explosions of massive stars — blew up within these starry islands, creating more stars and eventually planets. Like Earth, where life sprung up in abundance.

On Tuesday, the most powerful telescope ever built will help humanity trace its roots back to the beginning of time by peering through gas and dust, shedding light on what has thus far been unseeable.

And maybe, even reveal an atmosphere around an exoplanet.

The James Webb Space Telescope (JWST), a joint mission between NASA, the Canadian Space Agency (CSA) and the European Space Agency (ESA), will release several images — five at the very least — from peering through the darkness and the dust back to when the universe was in its infancy.

On Friday, the agencies announced their targets:

  • SMACS 0723, a cluster of galaxies that distort the light of objects behind them allowing astronomers to see faint, distant galaxies behind them.
  • WASP-96b, a giant gas planet that lies 1,150 light-years from Earth.
  • The Southern Ring Nebula.
  • Stephan’s Quintet, a collection of five galaxies.
  • And one of the most magnificent nebulas in the night sky, the Carina Nebula.

“You’re going to see images that are absolutely stunning,” said René Doyon, a professor at Université de Montréal and principal investigator of NIRISS, one of the four scientific instruments on the James Webb Space Telescope.

The JWST is a $10-billion powerhouse. Sitting in an orbit beyond the moon, the telescope is larger, and thus much more powerful than the Hubble Space Telescope which orbits Earth. It also has different capabilities than Hubble, and as a result, is able to peer further back into time to when the universe was in its infancy.

Canada has played a major role in Webb’s capabilities. First, there is the Canadian-built Fine Guidance Sensor (FGS), which is crucial to keeping the telescope on target. 

There’s also the Near-Infrared Imager and Slitless Spectrograph (NIRISS), which will help astronomers study the atmospheres of exoplanets and observe distant galaxies.

The Southern Ring Nebula, also known as the ‘Eight-Burst’ Nebula because it appears to be a figure eight when seen through some telescopes, is visible in the southern hemisphere. The nebula is nearly half a light year in diameter and 2,000 light years away. Gases are moving away from the dying star at its centre at a speed of 14 kilometres per second. (NASA/The Hubble Heritage Team [STScI/AURA/NASA])

Because of Canada’s contribution, astronomers here will get a lot of time to use the telescope.

“Canadians should be proud to [be part] of this project,” said Doyon, who’s been working on Webb for the past 20 years. “Every single image, every single [bit] of data that will come out of Webb will have been guided by the eye, the Canadian eye from FGS. So … we should definitely be proud.”

Peering deeper into the past

The farther away an object is, the longer it takes for its light to reach us. That means everything we see is as it was, not as it is.

Telescopes allow us to see further back in time by collecting faint light. The bigger the telescope, the more light it can collect and the further back it can see.

While Hubble has been able to see distant galaxies, it doesn’t have the resolution Webb does, so that means the images will be far sharper, revealing much more detail. 

As well, Webb sees in the near-infrared, which means it can look through the dust and gas that might otherwise obscure objects. Hubble mainly sees the universe in optical light, like the human eye, though it can also see in ultraviolet and near-infrared wavelengths. Webb, however, is optimized to see in the infrared.

All this is to say, Webb will peer deeper into our past than ever before and provide astronomers with incredible detail.

“There’s a difference between detection and actually studying something in depth. Hubble had seen specks of objects that we think had formed just a few 100 million years after the birth of the universe,” said Lamiya Mowla, an astronomer at the University of Toronto’s Dunlap Institute for Astronomy and Astrophysics. 

“However, those need to be studied even deeper with James Webb. With James Webb we can actually see objects as they’re forming, just after they are getting warm; discs are forming; bulges of the galaxies are forming. That’s the type of era that we will be able to see with the James Webb Space Telescope.”

This image shows the Hubble Ultra Deep Field 2012, an improved version of the Hubble Ultra Deep Field image featuring additional observation time. It revealed for the first time a population of distant galaxies at redshifts between 9 and 12, including the most distant object observed to date. These galaxies will require confirmation using spectroscopy by the forthcoming James Webb Space Telescope before they are considered to be fully confirmed. (NASA, ESA, R. Ellis (Caltech))

Mowla, who specializes in galaxy evolution and formation, is also part of the CAnadian NIRISS Unbiased Cluster Survey (CANUCS), which will study some of the earliest galaxies in the universe. 

She’s eagerly anticipating the release of the first science images and will be watching from St. Mary’s University in Halifax with fellow CANUCS members, including Chris Willott, an astronomer with National Research Council Canada’s Herzberg Astronomy and Astrophysics Research Centre who is leading the research. The instrument will use NIRISS to study galaxies at different periods in the universe’s history.

I nearly broke my jaw the first time I saw this data.– René Doyon, professor at Université de Montréal 

Willott said he’s seen some early test images already.

“It’s super exciting to finally see the data getting released,” said Willott. “I’ve been looking at these images for months now. And they are just so spectacular, and it’s really exciting that the whole world is going to get to see them on Tuesday.”

He’s anxious to get more data to study the evolution of galaxies, which come in all sorts of different shapes and sizes.

“I want to see how far back we can actually go towards the beginning of the universe. We know that Webb is going to smash the records that we could get from Hubble in terms of how far back and how early in the universe we can look. But we don’t really know how far back we’ll get with Webb. And that’s something I think that will take time.” 

‘A new chapter’

Webb will not only be able to see some of the earliest galaxies, but it also can detect atmospheres around distant planets orbiting other stars. Ultimately, astronomers hope Webb will be able to detect any potential signatures of life from these exoplanets.

“I can say that [on] July 12, we’re turning a new page on a new chapter for studying exoplanet atmospheres,” Doyon said. “The quality of the data is just completely amazing. I nearly broke my jaw the first time I saw this data.”

While the general public may be excited to see new and more detailed images of our universe, for astronomers it’s all about getting their hands on the data for analysis.

For example, Doyon said, there’s the famous exoplanetary system known as TRAPPIST-1, which has seven planets, three of which are in the habitable zone, a region around a star where water is able to exist on a planet’s surface. 

This chart shows, on the top row, artist conceptions of the seven planets of TRAPPIST-1 with their orbital periods, distances from their star, radii and masses as compared to those of Earth. The bottom row shows data about Mercury, Venus, Earth and Mars. (NASA/JPL-Caltech)

“The only way to find out whether they have water on their surface is to measure the atmosphere,” he said. “And Webb has the capability to do this and particularly the NIRISS instrument.”

But that’s just the beginning of the exoplanet research. Astronomers hope to eventually find signatures of life.

“The next question is: do they have water on [their surfaces], then the next step will be biosignatures, gas that is only produced by biological activity. That is a long shot. I mean, we know that it will be very hard to detect that with Webb, it will take probably a whole lifetime of JWST to do this, but who knows? That’s the nice thing about this: we’re going to be caught by surprise.”

Mowla is also waiting to be surprised researching galactic evolution.

“Really, I am waiting to see something that cannot be explained by the current theory. Because that’s what always happens. Whenever you have new data, and you look at the universe in a different realm. You always find something that will go against your theories and it will force you to rethink a lot of things,” she said.

Adblock test (Why?)



Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending

Exit mobile version