Charting a new course for MS treatment | Canada News Media
Connect with us

Health

Charting a new course for MS treatment

Published

 on

Research from the UBC Faculty of Medicine could stop the disease in its tracks — and even reverse its devastating effects

One day in the spring of 2014, Heidi Scott’s face went numb. Out-of-nowhere, just-returned-from-the-dentist numb, as she vividly remembers.

“I was on a business trip and it took me completely by surprise. My entire face was affected,” Heidi says.

Alarmed, she returned home to see her doctor, who ordered a battery of tests. The results were inconclusive.

Heidi was in her early forties, a runner and in good health. Her doctor said she could expect to make a full recovery, and eventually she did. After a month or two, she regained the feeling in her face.

“Once I was back to normal, the incident felt kind of unreal, like, did that really happen to me?” she says.

A year later, the numbness returned. This time it spread through Heidi’s ear, down the side of her neck, and into her shoulder. There were muscle spasms and spells of intense fatigue. An ear infection was ruled out, as were various nerve issues. Again, the symptoms resolved, and again, Heidi was left to wonder what was going on.

Within a few weeks, she began to struggle with balance and coordination, and slur her speech. Heidi worried that her colleagues at work might think she was drinking. She also worried that people thought the problem was all in her head, because the symptoms came and went. They were unpredictable.

“If we can stop the disease from progressing and help people recover even some of what they’ve lost, the impact on their quality of life would be quite profound.”
Dr. Freda Miller
Professor of Medical Genetics

An MRI finally confirmed that something was indeed wrong. The scan revealed tiny lesions, or ‘sclerae,’ in the white matter of her brain. She was referred to the Vancouver Coastal Health MS Clinic in the UBC Faculty of Medicine’s Djavad Mowafaghian Centre for Brain Health.

After careful consideration of her symptoms and test results, her doctors arrived at a diagnosis: multiple sclerosis (MS). MS is a progressive autoimmune disease that attacks nerve cells in the brain and spine, causing a bewildering array of symptoms.

At the MS Clinic, Heidi was able to access a treatment that helps to control the symptoms and slow the progression of the disease. Unfortunately, like most MS drugs, it’s a powerful immunosuppressant that also leaves her vulnerable to infection. Even a mild illness such as the common cold can be dangerous.

But there’s reason for optimism. New technologies and new research are opening up new possibilities for MS treatment and care.

“Truly, we’re in the midst of a golden age of biomedical innovation,” says Dr. Peter Zandstra, a professor in the UBC School of Biomedical Engineering (SBME) and an expert on stem cells and bioengineering.

“It’s exciting, because the ultimate goal is to give patients their lives back.”

Researchers at the UBC Faculty of Medicine are working across disciplines to do just that. They’re developing novel therapies to control MS symptoms for more patients with fewer side effects, slow the progression of the disease — and even reverse the damage it causes to the nervous system.

And thanks to a new gift — the largest known donation ever for MS research, worldwide — UBC is poised to become a global hub for MS innovation, scaling up its team science approach to bring new and better therapies to patients sooner than ever before.

For the more than 90,000 Canadians living under the shadow of MS — and the 4,000 who receive a diagnosis each year — sooner can’t come soon enough.

Stopping a debilitating disease in its tracks

It’s the unpredictability of the disease that makes MS so difficult to diagnose, treat — and live with.

MS attacks and destroys myelin, the fatty sheath that covers nerve cells in the brain and spine. If you think of nerve cells as, together, forming the cables along which information (in the guise of electrical signals) travels through the nervous system, then myelin is the protective coating that insulates the cables, allowing the information to flow smoothly from place to place without interference. Your brain sends a message to your eyelid, telling it to blink, and it does, simple as that.

As myelin disappears, the nervous system begins to malfunction. Because MS attacks nerve cells seemingly at random, people with the disease can experience a wide range of symptoms. In one person, it might disrupt communication between the brain and the optic nerve, causing vision loss. In another, it might impair bladder function, or cause intense tingling in the hands and feet, even paralysis.

Symptoms come and go, especially in the early stages, and especially in patients with the relapsing-remitting form of the disease, like Heidi Scott. Left untreated, the disease can progress even during periods of apparent remission.

Today’s treatments are life-changing in ways good and bad. For Heidi, they allow her to live almost symptom-free with the assurance that the disease isn’t silently devastating her nervous system. But they also mean giving up the social life most people take for granted.

“I’m fortunate in that I work from home, so it’s easier for me to avoid everyday viruses that can make me very sick. But the side-effects of the treatment have had a tremendous impact. Not everyone understands the implications of being immune-compromised. I’ve fallen out with loved ones because I have to isolate,” she says.

It’s a difficult trade-off, and even then, the current treatments don’t work for everyone. For many patients, MS still means gruelling day-to-day symptoms and long-term disability.

Dr. Megan Levings, a professor in UBC’s Department of Surgery and SBME, has developed a cellular therapy that promises to make immunosuppressant treatments more effective for more people. She leads a team of immunologists and cell engineers who have demonstrated that it’s possible to ‘train’ regulatory T cells (Tregs) — a type of immune cell that controls the body’s response to healthy tissues — to recognize and accept specific types of tissue that a malfunctioning immune system might otherwise attack.

“We want to do for MS what has been done for cancer,” she says. “We know, for example, that some types of T-cell therapies can be dialed up to help the immune system fight against cancer and infection. With MS, we want to dial down the body’s immune response that leads to disease.”

The goal is an immunotherapy that would control the specific and unwanted inflammatory response that, in MS, leads to demyelination — while allowing the immune system to function normally in every other respect. The hope is that MS patients will one day enjoy the benefits of the current treatments with few or none of the side effects.

Thanks to innovative bioprocess engineering techniques developed by Dr. Zandstra and other bioengineers, the therapy, if successful, could be manufactured at scale more readily than most therapeutics, making it quickly and widely accessible to patients as an off-the-shelf treatment.


Dr. Anthony Traboulsee (left) consults with a patient at the VCH MS Clinic at UBC Hospital.

Repairing the brain — and restoring quality of life

For many MS patients, the bigger concern is restoring neurological function they may have already lost.

“It breaks my heart to see patients I’ve known since their diagnosis suffer with serious, progressive disability due to the current lack of treatment options,” says Dr. Anthony Traboulsee, a UBC clinical professor and neurologist at the MS Clinic.

Regenerative medicine may hold the key.

Dr. Freda Miller, a UBC professor and renowned neurobiologist in the Department of Medical Genetics, leads a multidisciplinary team of scientists from UBC and Toronto’s Sick Kids Hospital who are investigating the use of stem cells to repair the damage caused by MS.

Stem cells are the precursors to the specialized cells the body needs to function. Whether a stem cell develops into, for example, a blood cell, an immune cell, or a neuron depends on the signals it receives from its environment, in the form of chemical messages from the network of cells surrounding them.

“The beauty is that the brain contains reserves of neural stem cells. With the right chemical prompts, they can be converted into cells that produce myelin, replacing the ones destroyed by MS,” Dr. Miller explains. “If we can figure out what those prompts are, we can stimulate the brain to repair itself.”

But to decode the messages that prompt a stem cell to become a myelin-producing cell, you have to cut through the noise of all the other communication happening in the cellular environment — a daunting task that requires multidisciplinary expertise and involves huge datasets.

This is where a team science approach makes the difference.

Dr. Miller also works closely with Dr. Zandstra. Neuroscientists from her lab collaborate with his team of physicists and biomedical engineers to model cell networks in three-dimensional space, which they use to formulate and test predictions about cell behaviour. Together the teams are creating a map of cell communication networks that could lead to a breakthrough treatment pathway for MS and other, similar diseases.

“The beauty is that the brain contains reserves of neural stem cells. With the right chemical prompts, they can be converted into cells that produce myelin, replacing the ones destroyed by MS.”
Dr. Freda Miller
Professor of Medical Genetics

Dr. Miller believes her team’s research, if successful, could work in tandem with Dr. Levings’s immunotherapy to give patients a chance at recovery.

“In a perfect world, we figure out a way to regenerate the damaged areas, while our colleagues in immunology train the immune system to leave the new myelin alone,” Dr. Miller says. “It’s a one-two punch.”


90,000+

Canadians live with MS

4,000+

Canadians are diagnosed with MS each year

$33.8M

in new funding for MS research and care


A grand plan to bring new treatments to MS patients sooner than ever

The challenge with any breakthrough discovery, of course, is what comes next. Translating innovative research into an off-the-shelf treatment requires major investment and resources, including pharmacological expertise, clinical trials infrastructure, bio-manufacturing facilities, and much more.

It also requires time, which many patients do not have.

“In terms of disease progression, five or ten years is a very long time for the patients I see. By giving them the opportunity to participate in early-stage clinical trials for promising new therapies, we can give them a greater chance at success,” Dr. Traboulsee says.

With $33.8 million in new funding from an anonymous donor, UBC and its partners are establishing the MS Research Network, a world-class research and patient-care hub that will use the latest advances in cell and gene engineering to develop, manufacture, and test next-generation cell-based therapies.

“If we can stop the disease from progressing and help people recover even some of what they’ve lost, the impact on their quality of life would be quite profound,” Dr. Miller says. “The MS Research Network is an important step toward realizing that dream.”

“Truly, we’re in the midst of a golden age of biomedical innovation. It’s exciting, because the ultimate goal is to give MS patients their lives back.”
Dr. Peter Zandstra
Professor of Biomedical Engineering

Heidi Scott considers herself one of the lucky ones. Nearly a decade on, she is still able to live an active, if carefully managed, lifestyle. She has become a patient-advocate, drawing on her experiences with MS — from pursuing a diagnosis to enrolling in clinical trials — to make it easier for other people to do the same, whatever health issue they might be dealing with.

“As an MS patient, you’re almost uniquely positioned to see the gaps in the system. It’s such a complicated disease and it requires an extremely thoughtful, holistic approach to research, treatment, and care,” she says.

“That’s what is so exciting about this donation and UBC’s work.”


Source link

Continue Reading

Health

Canada to donate up to 200,000 vaccine doses to combat mpox outbreaks in Africa

Published

 on

 

The Canadian government says it will donate up to 200,000 vaccine doses to fight the mpox outbreak in Congo and other African countries.

It says the donated doses of Imvamune will come from Canada’s existing supply and will not affect the country’s preparedness for mpox cases in this country.

Minister of Health Mark Holland says the donation “will help to protect those in the most affected regions of Africa and will help prevent further spread of the virus.”

Dr. Madhukar Pai, Canada research chair in epidemiology and global health, says although the donation is welcome, it is a very small portion of the estimated 10 million vaccine doses needed to control the outbreak.

Vaccine donations from wealthier countries have only recently started arriving in Africa, almost a month after the World Health Organization declared the mpox outbreak a public health emergency of international concern.

A few days after the declaration in August, Global Affairs Canada announced a contribution of $1 million for mpox surveillance, diagnostic tools, research and community awareness in Africa.

On Thursday, the Africa Centres for Disease Control and Prevention said mpox is still on the rise and that testing rates are “insufficient” across the continent.

Jason Kindrachuk, Canada research chair in emerging viruses at the University of Manitoba, said donating vaccines, in addition to supporting surveillance and diagnostic tests, is “massively important.”

But Kindrachuk, who has worked on the ground in Congo during the epidemic, also said that the international response to the mpox outbreak is “better late than never (but) better never late.”

“It would have been fantastic for us globally to not be in this position by having provided doses a much, much longer time prior than when we are,” he said, noting that the outbreak of clade I mpox in Congo started in early 2023.

Clade II mpox, endemic in regions of West Africa, came to the world’s attention even earlier — in 2022 — as that strain of virus spread to other countries, including Canada.

Two doses are recommended for mpox vaccination, so the donation may only benefit 100,000 people, Pai said.

Pai questioned whether Canada is contributing enough, as the federal government hasn’t said what percentage of its mpox vaccine stockpile it is donating.

“Small donations are simply not going to help end this crisis. We need to show greater solidarity and support,” he said in an email.

“That is the biggest lesson from the COVID-19 pandemic — our collective safety is tied with that of other nations.”

This report by The Canadian Press was first published Sept. 13, 2024.

Canadian Press health coverage receives support through a partnership with the Canadian Medical Association. CP is solely responsible for this content.

The Canadian Press. All rights reserved.

Source link

Continue Reading

Health

How many Nova Scotians are on the doctor wait-list? Number hit 160,000 in June

Published

 on

 

HALIFAX – The Nova Scotia government says it could be months before it reveals how many people are on the wait-list for a family doctor.

The head of the province’s health authority told reporters Wednesday that the government won’t release updated data until the 160,000 people who were on the wait-list in June are contacted to verify whether they still need primary care.

Karen Oldfield said Nova Scotia Health is working on validating the primary care wait-list data before posting new numbers, and that work may take a matter of months. The most recent public wait-list figures are from June 1, when 160,234 people, or about 16 per cent of the population, were on it.

“It’s going to take time to make 160,000 calls,” Oldfield said. “We are not talking weeks, we are talking months.”

The interim CEO and president of Nova Scotia Health said people on the list are being asked where they live, whether they still need a family doctor, and to give an update on their health.

A spokesperson with the province’s Health Department says the government and its health authority are “working hard” to turn the wait-list registry into a useful tool, adding that the data will be shared once it is validated.

Nova Scotia’s NDP are calling on Premier Tim Houston to immediately release statistics on how many people are looking for a family doctor. On Tuesday, the NDP introduced a bill that would require the health minister to make the number public every month.

“It is unacceptable for the list to be more than three months out of date,” NDP Leader Claudia Chender said Tuesday.

Chender said releasing this data regularly is vital so Nova Scotians can track the government’s progress on its main 2021 campaign promise: fixing health care.

The number of people in need of a family doctor has more than doubled between the 2021 summer election campaign and June 2024. Since September 2021 about 300 doctors have been added to the provincial health system, the Health Department said.

“We’ll know if Tim Houston is keeping his 2021 election promise to fix health care when Nova Scotians are attached to primary care,” Chender said.

This report by The Canadian Press was first published Sept. 11, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

Health

Newfoundland and Labrador monitoring rise in whooping cough cases: medical officer

Published

 on

 

ST. JOHN’S, N.L. – Newfoundland and Labrador‘s chief medical officer is monitoring the rise of whooping cough infections across the province as cases of the highly contagious disease continue to grow across Canada.

Dr. Janice Fitzgerald says that so far this year, the province has recorded 230 confirmed cases of the vaccine-preventable respiratory tract infection, also known as pertussis.

Late last month, Quebec reported more than 11,000 cases during the same time period, while Ontario counted 470 cases, well above the five-year average of 98. In Quebec, the majority of patients are between the ages of 10 and 14.

Meanwhile, New Brunswick has declared a whooping cough outbreak across the province. A total of 141 cases were reported by last month, exceeding the five-year average of 34.

The disease can lead to severe complications among vulnerable populations including infants, who are at the highest risk of suffering from complications like pneumonia and seizures. Symptoms may start with a runny nose, mild fever and cough, then progress to severe coughing accompanied by a distinctive “whooping” sound during inhalation.

“The public, especially pregnant people and those in close contact with infants, are encouraged to be aware of symptoms related to pertussis and to ensure vaccinations are up to date,” Newfoundland and Labrador’s Health Department said in a statement.

Whooping cough can be treated with antibiotics, but vaccination is the most effective way to control the spread of the disease. As a result, the province has expanded immunization efforts this school year. While booster doses are already offered in Grade 9, the vaccine is now being offered to Grade 8 students as well.

Public health officials say whooping cough is a cyclical disease that increases every two to five or six years.

Meanwhile, New Brunswick’s acting chief medical officer of health expects the current case count to get worse before tapering off.

A rise in whooping cough cases has also been reported in the United States and elsewhere. The Pan American Health Organization issued an alert in July encouraging countries to ramp up their surveillance and vaccination coverage.

This report by The Canadian Press was first published Sept. 10, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending

Exit mobile version