Connect with us

Science

Collapsing permafrost is transforming the Arctic’s waterways

Published

 on

Some lakes in the Arctic are expanding while others are disappearing altogether due to climate change, which threatens to have devastating effects on the peoples of the Arctic who have used these freshwater systems for generations

Lakes, ponds and streams cover a large fraction of the low-lying tundra that circles the Arctic. For example, roughly 65,000 lakes and ponds lie within the Mackenzie Delta and an area to its east.

Lakes across this terrain often exist because of the impermeable nature of the permafrost around and below these lakes. Some of this permafrost has existed here since the last ice age.

Yet as the climate warms, this permafrost is at risk of thawing for the first time in tens of thousands of years. Permafrost thaw has already caused some of these lakes to drain and dry up, and others to expand. Dramatic changes over the last 70 years have been well documented through air photos and satellite images.

These lakes are linked by a vast network of rivers and streams, and are important habitat for large populations of migratory birds, fish and mammals. They are also vital to the lives of northerners, who use them for hunting, fishing, trapping, transportation, fresh water and recreation.

With increasing evidence of ecosystem destruction around the world related to the changing climate, there is also increasing concern that unique Arctic freshwater ecosystems are under threat.

Disappearing lakes

Lakes controlled by the presence of permafrost can drain rapidly if the permafrost gives way, a process called catastrophic lake drainage. Sometimes an entire lake can drain in as little as a day, like the one that we studied after it vanished from the landscape north of Inuvik, N.W.T., in 16 hours in August 1989.

The disappearance of this lake occurred as water seeped through cracks that had formed in ice wedges during the previous winter. The relatively warm lake water melted the ice within the permafrost, creating a new outlet channel.

Lake drainage presents a serious safety risk to hunters or fishers who may be downstream. It also destroys freshwater habitat, quickly converting it to land, and expands, or even forms, new stream channels.

Like many impacts of climate change on the Arctic, however, unexpected changes also occur. After our initial studies of draining lakes, we expected to find the number of lakes draining annually across this region would increase as the climate warmed.

An exceptionally warm summer in 2004 triggered this 300-metre-long slump associated with thawing permafrost In Noatak National Preserve, Alaska. Photo: National Parks Service / Flickr

Instead, we found lake drainage in this area had decreased by one-third between 1950 and 2000. This decrease is likely due to fewer extremely cold winter days that are needed for ice wedge cracking to occur over the winter.

Yet as warming continues, the upper layer of the soil that thaws each year is expected to get deeper and will likely lead to more lake drainage events. An increase in lake drainage has already been reported in Siberia, and this is likely the long-term future of many Arctic lowland lakes.

Expanding lakes

Other lowland lakes are expanding as ice in the lake shoreline melts. New lakes may also appear in the tundra depressions that form as ice-rich permafrost thaws, creating new aquatic habitat. Changes like this have been seen in Siberia, but they haven’t been observed in the Inuvik region yet.

This thawing of ice-rich permafrost, called thermokarst, results in changes in water chemistry and increases in water clarity. These changes will likely affect aquatic food webs in ways that are still poorly understood.

Three core sections from the upper metre of permafrost at a site north of Inuvik, N.W.T. White material is ice embedded in the permafrost. Photo: Niels Weiss

The Arctic is warming at two to three times the rate of the global average. But determining where the permafrost will thaw — in what way and how quickly — is a complicated puzzle affected by many factors.

For example, there are an increasing number of shrubs growing on the tundra. This affects the accumulation of blowing snow, and may speed up or slow down the rate of snow melt and shorten or lengthen the number of snow-free days. All of this affects permafrost thaw and freshwater systems.

Millennia of change ahead

Scientific organizations, governments and international groups around the world have all recently warned of the alarming impacts climate change is having — and will have — on the Arctic. Thawing permafrost is already destabilizing buildings, roads and airstrips, eroding coastlines and releasing more carbon into the atmosphere.

It is critically important to realize that permafrost thaw will not stop once the global climate has stabilized, whether at the Paris Agreement limits of 1.5C or 2C, or at much higher levels. Even if anthropogenic carbon emissions are reduced over the coming decades, the concentration of carbon dioxide in the atmosphere will remain above pre-industrial levels for centuries — and likely millennia. Temperatures will also remain high.

As long as the global average temperature stays above the pre-industrial average, permafrost will continue to thaw, ground ice will melt, the land will subside, lakes and streams and freshwater ecosystems will change dramatically, with devastating effects on the peoples of the Arctic who have used these freshwater systems for generations.

Over the next year, governments will make decisions that will limit the increase in global temperature to below 1.5C or allow global warming to further increase to 2C or more. Our decisions will impact the Arctic and the globe for generations.

The Conversation

Source link

Continue Reading

Science

NASA’s Hubble Space Telescope captured two festive-looking nebulas – Tech Explorist

Published

 on


The image shows NGC 248, about 60 light-years long and 20 light-years wide. They are two nebulas, situated to appear as one. The nebulas, together, are called NGC 248.

Initially discovered in 1834 by the astronomer Sir John Herschel, NGC 248 resides in the Small Magellanic Cloud, located approximately 200,000 light-years away in the southern constellation Tucana.

Small Magellanic Cloud is a dwarf galaxy that is a satellite of our Milky Way galaxy. The image is part of a study called Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE).

The dwarf satellite galaxy contains several brilliant hydrogen nebulas, including NGC 248. Intense radiation from the brilliant central stars is heating hydrogen in each nebula, causing them to glow red.

The study’s principal investigator, Dr. Karin Sandstrom of the University of California, San Diego, said“The Small Magellanic Cloud has between a fifth and a tenth of the amount of heavy elements that the Milky Way does. Because it is so close, astronomers can study its dust in great detail and learn about what dust was like earlier in the history of the universe.”

“It is important for understanding the history of our galaxy, too. Most of the star formation happened earlier in the universe, at a time when there was a much lower percentage of heavy elements than there is now. Dust is a critical part of how a galaxy works, how it forms stars.”

The image is part of a study called Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE). The data used in this image were taken with Hubble’s Advanced Camera for Surveys in September 2015.

Adblock test (Why?)



Source link

Continue Reading

Science

When To See An ‘Earth-Grazer’ This Weekend: Don’t Write-Off The Perseid Meteor Shower, Says Expert – Forbes

Published

 on


If you’ve ever laid down a blanket or set up a lawn chair to watch a meteor shower there’s a good chance it was to watch the Perseids.

Due to peak at 01:00 UT on Saturday, August 13, 2022, normal advice would be to be outside at that time (in Europe) or just as soon as its gets dark on Friday, August 12 (North America).

As I’ve already reported, this year the Perseids coincides with a full Moon, so all but the brightest meteors and “fireballs” (larger, brighter meteors) will be visible. So from the 50-75-or-so “shooting stars” you might normally see during the peak of the Perseids only a few—albeit bright—meteors will be visible.

It’s almost not worth the bother, I said, advising you to go watch this instead next weekend.

However, there is another opinion. In an article published on the American Meteor Society’s website, fireball coordinator Robert Lunsford says that despite the bright full Moon visible meteor rates during the peak of the Perseid meteor shower will be better than 95% of all other nights this year.

When to see the Perseid meteor shower

“Most of the Perseid meteors are faint and bright moonlight will make it difficult to view,” he writes. “Despite the glare of moonlight, the Perseids produce many bright meteors that can still be easily seen despite the bright moonlight.”

He also advises two great times to watch for shooting stars—just after sunset on Friday, August 12 and just before dawn on Saturday, August 13.

Perseids: ‘Earth-grazers’ just after sunset

You’ll need patience, but to see an “Earth-grazer” is unforgettable.

Just after sunset is actually thee worst time in terms of numbers of shooting stars you might see, but the few that do come your way this time of night are special.” The reason is that they just skim the upper regions of the atmosphere and will last much longer than Perseids seen during the morning hours,” writes Lunsford. “Most of these “earth-grazing” Perseids will be seen low in the east or west, traveling north to south.”

Perseids: ‘shooting stars’ before dawn

The activity from the Perseid meteor shower will peak where you are as the radiant—the constellation of Perseus—rises higher into the night sky. “Theoretically, the best time to watch the Perseids is just before the break of dawn when the radiant lies highest in a dark sky,” writes Lunsford. That’s about 04:00 local time, though he also reveals that experienced observers often say the hour between 03:00 and 04:00 is usually the best.

Perseids: ‘shooting stars’ in a moonless sky

If you want to look for Perseids in a dark, moonless sky then you’re mostly out of luck this year. By the time the full Moon is rising long after midnight the meteor rates will have vastly reduced, though it may be worth shooting star-gazing after August 19, 2022.

When is the Perseid meteor shower in 2023?

The Perseid meteor shower will next year peak—in thankfully moonless skies—at around 07:00 UT on August 13, 2023 (so 03:00 EST and midnight PST), which will be ideal for North America.

Wishing you clear skies and wide eyes.

Adblock test (Why?)



Source link

Continue Reading

Science

Meet Qikiqtania, a fossil fish who stayed in the water while others ventured onto land – Big Think

Published

 on


Approximately 365 million years ago, one group of fishes left the water to live on land. These animals were early tetrapods, a lineage that would radiate to include many thousands of species including amphibians, birds, lizards and mammals. Human beings are descendants of those early tetrapods, and we share the legacy of their water-to-land transition.

But what if, instead of venturing onto the shores, they had turned back? What if these animals, just at the cusp of leaving the water, had receded to live again in more open waters?

A new fossil suggests that one fish, in fact, did just that. In contrast to other closely related animals, which were using their fins to prop their bodies up on the bottom of the water and perhaps occasionally venturing out onto land, this newly discovered creature had fins that were built for swimming.

Tom Stewart holds the Qikiqtania fossil. (Stephanie Sang / CC BY-ND)

In March 2020, I was at The University of Chicago and a member of biologist Neil Shubin’s lab. I was working with Justin Lemberg, another researcher in our group, to process a fossil that was collected back in 2004 during an expedition to the Canadian Arctic.

From the surface of the rock it was embedded in, we could see fragments of the jaws, about 2 inches long (5 cm) and with pointed teeth. There were also patches of white scales with bumpy texture. The anatomy gave us subtle hints that the fossil was an early tetrapod. But we wanted to see inside the rock.

Smarter faster: the Big Think newsletter

Subscribe for counterintuitive, surprising, and impactful stories delivered to your inbox every Thursday

Notice: JavaScript is required for this content.

So we used a technology called CT scanning, which shoots X-rays through the specimen, to look for anything that might be hidden within, out of view. On March 13, we scanned an unassuming piece of rock that had a few scales on top and discovered it contained a complete fin buried inside. Our jaws dropped. A few days later, the lab and campus shut down, and COVID-19 sent us into lockdown.

The fin revealed

A fin like this is extremely precious. It can give scientists clues into how early tetrapods were evolving and how they were living hundreds of millions of years ago. For example, based on the shape of certain bones in the skeleton, we can make predictions about whether an animal was swimming or walking.

Although that first scan of the fin was promising, we needed to see the skeleton in high resolution. As soon as we were allowed back on campus, a professor in the university’s department of the geophysical sciences helped us to trim down the block using a rock saw. This made the block more fin, less rock, allowing for a better scan and a closer view of the fin.

[embedded content]

When the dust had cleared and we’d finished analyzing data on the jaws, scales and fin, we realized that this animal was a new species. Not only that, it turns out that this is one of the closest known relatives to limbed vertebrates – those creatures with fingers and toes.

We named it Qikiqtania wakei. Its genus name, pronounced “kick-kiq-tani-ahh,” refers to the Inuktitut words Qikiqtaaluk or Qikiqtani, the traditional name for the region where the fossil was found. When this fish was alive, many hundreds of millions of years ago, this was a warm environment with rivers and streams. Its species name honors the late David Wake, a scientist and mentor who inspired so many of us in the field of evolutionary and developmental biology.

[embedded content]

Skeletons tell how an animal lived

Qikiqtania reveals a lot about a critical period in our lineage’s history. Its scales tell researchers unambiguously that it was living underwater. They show sensory canals that would have allowed the animal to detect the flow of water around its body. Its jaws tell us that it was foraging as a predator, biting and holding onto prey with a series of fangs and drawing food into its mouth by suction.

But it is Qikiqtania’s pectoral fin that is most surprising. It has a humerus bone, just as our upper arm does. But Qikiqtania’s has a very peculiar shape.

Early tetrapods, like Tiktaalik, have humeri that possess a prominent ridge on the underside and a characteristic set of bumps, where muscles attach. These bony bumps tell us that early tetrapods were living on the bottom of lakes and streams, using their fins or arms to prop themselves up, first on the ground underwater and later on land.

Qikiqtania’s humerus is different. It lacks those trademark ridges and processes. Instead, its humerus is thin and boomerang-shaped, and the rest of the fin is large and paddle-like. This fin was built for swimming.

Whereas other early tetrapods were playing at the water’s edge, learning what land had to offer, Qikiqtania was doing something different. Its humerus is truly unlike any others known. My colleagues and I think it shows that Qikiqtania had turned back from the water’s edge and evolved to live, once again, off the ground and in open water.

Evolution isn’t a march in one direction

Evolution isn’t a simple, linear process. Although it might seem like early tetrapods were trending inevitably toward life on land, Qikiqtania shows exactly the limitations of such a directional perspective. Evolution didn’t build a ladder towards humans. It’s a complex set of processes that together grow the tangled tree of life. New species form and they diversify. Branches can head off in any number of directions.

Neil Shubin, who found the fossil, pointing across the valley to the site where Qikiqtania was discovered on Ellesmere Island. (Neil Shubin / CC BY-ND)

This fossil is special for so many reasons. It’s not just miraculous that this fish was preserved in rock for hundreds of millions of years before being discovered by scientists in the Arctic, on Ellesmere Island. It’s not just that it’s remarkably complete, with its full anatomy revealed by serendipity at the cusp of a global pandemic. It also provides, for the first time, a glimpse of the broader diversity and range of lifestyles of fishes at the water-to-land transition. It helps researchers see more than a ladder and understand that fascinating, tangled tree.

Discoveries depend on community

Qikiqtania was found on Inuit land, and it belongs to that community. My colleagues and I were only able to conduct this research because of the generosity and support of individuals in the hamlets of Resolute Bay and Grise Fiord, the Iviq Hunters and Trappers of Grise Fiord, and the Department of Heritage and Culture, Nunavut. To them, on behalf of our entire research team, “nakurmiik.” Thank you. Paleontological expeditions onto their land have truly changed how we understand the history of life on Earth.

COVID-19 kept many paleontologists from traveling and visiting field sites across the world these last few years. We’re eager to return, to visit with old friends and to search again. Who knows what other animals lie hidden, waiting to be discovered inside blocks of unassuming stone.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Adblock test (Why?)



Source link

Continue Reading

Trending