adplus-dvertising
Connect with us

Science

Computers to Decide What to Tell Us in Search for Life on Mars – Lab Manager Magazine

Published

 on


Artist’s impression of the Rosalind Franklin Rover on Mars.

ESA/ATG medialab

NASA has stepped closer to allowing remote onboard computers to direct the search for life on other planets. Scientists from the NASA Goddard Space Flight Center have announced first results from new intelligent systems, to be installed in space probes, capable of identifying geochemical signatures of life from rock samples. Allowing these intelligent systems to choose both what to analyse and what to tell us back on Earth will overcome severe limits on how information is transmitted over huge distances in the search for life from distant planets. The systems will debut on the 2022/23 ExoMars mission, before fuller implementation on more distant bodies in the Solar System. 

300x250x1

Presenting the work at the Goldschmidt Geochemistry conference, lead researcher Victoria Da Poian said, “This is a visionary step in space exploration. It means that over time we’ll have moved from the idea that humans are involved with nearly everything in space, to the idea that computers are equipped with intelligent systems, and they are trained to make some decisions and are able to transmit in priority the most interesting or time-critical information.”

Eric Lyness, software lead in the Planetary Environments Lab at NASA Goddard Space Flight Center (GSFC), emphasized the need to have smart instruments for planetary exploration: 

“It costs a lot of time and money to send the data back to Earth which means scientists can’t run as many experiments or analyze as many samples as they would like. By using AI to do an initial analysis of the data after it is collected but before it is sent back to Earth, NASA can optimize what we receive, which greatly increases the scientific value of space missions.”

Da Poian and Lyness (both at NASA’s Goddard Space Flight Center), have trained artificial intelligence systems to analyze hundreds of rock samples and thousands of experimental spectra from the Mars Organic Molecule Analyzer (MOMA), an instrument that will land on Mars within the ExoMars Rosalind Franklin Rover in 2023. MOMA is a state-of-the-art mass spectrometer-based instrument, capable of analyzing and identifying organic molecules in rocks samples. It will search for past or present life on the Martian surface and subsurface through analysis of rock samples. The system to be sent to Mars will still transmit most data back to Earth, but later systems for the outer solar system will be given autonomy to decide what information to return to Earth.

First results show that when the system’s neural network algorithm processes a spectrum from an unknown compound, this can be categorized with up to 94 percent accuracy and matched to previously seen samples with 87 percent accuracy. This will be further refined until being incorporated into the 2023 mission.

Victoria Da Poian continued:

“What we get from these unmanned missions is data, lots of it; and sending data over hundreds of millions of kilometers can be very challenging in different environments and extremely expensive; in other words, bandwidth is limited. We need to prioritize the volume of data we send back to Earth, but we also need to ensure that in doing that we don’t throw out vital information. This has led us to begin to develop smart algorithms which can for now help the scientists with their analysis of the sample and their decision-making process regarding subsequent operations, and as a longer-term objective, algorithms that will analyse the data itself, will adjust and tune the instruments to run next operations without the ground-in-the-loop, and will transmit home only the most interesting data.”


Related Article: What Will a Lab on Mars Be Like?


The team used the raw data from initial laboratory tests with an Earth-based MOMA instrument to train computers to recognize familiar patterns. When new raw data is received, the software tells the scientists what previously encountered samples match this new data.

Eric Lyness said:

“The mission will face severe time limits. When we will be operating on Mars, samples will only remain in the rover for at most a few weeks before the rover dumps the sample and moves to a new place to drill. So, if we need to retest a sample, we need to do it quickly, sometimes within 24 hours. In the future, as we move to explore the moons of Jupiter such as Europa, and of Saturn such as Enceladus and Titan, we will need real-time decisions to be made onsite. With these moons, it can take five to seven hours for a signal from Earth to reach the instruments, so this will not be like controlling a drone, with an instant response. We need to give the instruments the autonomy to make rapid decisions to reach our science goals on our behalf.”

Lyness commented: “When first gathered, the data produced by the MOMA life-searching instrument is difficult to interpret. It will not shout out, ‘I’ve found life here,’ but will give us probabilities which will need to be analyzed. These results will largely tell us about the geochemistry that the instruments find. We’re aiming for the system to give scientists directions, for example our system might say, ‘I’ve got 91 percent confidence that this sample corresponds to a real world sample and I’m 87 percent sure it is phospholipids, similar to a sample tested on July 24th, 2018 and here is what that data looked like.’ We’ll still need humans to interpret the findings, but the first filter will be the AI system.”

The researchers note that data is expensive to send back from Mars, and gets more expensive as landers get further from Earth. “Data from a rover on Mars can cost as much as 100,000 times as much as data on your cell phone, so we need to make those bits as scientifically valuable as possible,” said Lyness.

Commenting, Dr. Joel Davis (postdoctoral researcher in planetary geology at the Natural History Museum, London, who was not involved in this work) said: “One of the main challenges for planetary missions is getting the data back to Earth—it costs both time and money. On Mars, the travel time delay is around 20 minutes and this gets more the further you go out in the solar system. Given the finite lifespans of missions, scientists have to be very selective about the data they chose to bring back. These results certainly seem promising; having greater autonomy onboard spacecraft is one way of ensuring the usefulness of the data returned.”

The Goldschmidt conference thanks the NASA Goddard Space Flight Center for their assistance in the preparation of this material. ExoMars is a joint European-Russian, European Space Agency-Roskosmos project. One of the central goals of the mission is to search for traces of past and present life. A key instrument is the Mars Organic Molecule Analyser (MOMA), which is a joint German-French-American investigation led by the Max Planck Institute for Solar System Research in Göttingen.

The Goldschmidt conference is the world’s main geochemistry conference, hosted by the Geochemical Society and the European Association of Geochemistry. Held annually, it covers such material as climate change, astrobiology, planetary and stellar development and conditions, chemistry of Earth materials, pollution, the undersea environment, volcanoes, and many other subjects. For 2020 the scheduled Hawaii congress was moved online, taking place from 21-26 June, see https://goldschmidt.info/2020/index. Future congresses are in Lyon, France (2021) and the rescheduled Hawaii congress (2022).

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

Science

Marine plankton could act as alert in mass extinction event: UVic researcher – Langley Advance Times

Published

 on


A University of Victoria micropaleontologist found that marine plankton may act as an early alert system before a mass extinction occurs.

With help from collaborators at the University of Bristol and Harvard, Andy Fraass’ newest paper in the Nature journal shows that after an analysis of fossil records showed that plankton community structures change before a mass extinction event.

“One of the major findings of the paper was how communities respond to climate events in the past depends on the previous climate,” Fraass said in a news release. “That means that we need to spend a lot more effort understanding recent communities, prior to industrialization. We need to work out what community structure looked like before human-caused climate change, and what has happened since, to do a better job at predicting what will happen in the future.”

300x250x1

According to the release, the fossil record is the most complete and extensive archive of biological changes available to science and by applying advanced computational analyses to the archive, researchers were able to detail the global community structure of the oceans dating back millions of years.

A key finding of the study was that during the “early eocene climatic optimum,” a geological era with sustained high global temperatures equivalent to today’s worst case global warming scenarios, marine plankton communities moved to higher latitudes and only the most specialized plankton remained near the equator, suggesting that the tropical temperatures prevented higher amounts of biodiversity.

“Considering that three billion people live in the tropics, the lack of biodiversity at higher temperatures is not great news,” paper co-leader Adam Woodhouse said in the release.

Next, the team plans to apply similar research methods to other marine plankton groups.

Read More: Global study, UVic researcher analyze how mammals responded during pandemic

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Scientists Say They Have Found New Evidence Of An Unknown Planet… – 2oceansvibe News

Published

 on


In the new work, scientists looked at a set of trans-Neptunian objects, or TNOs, which is the technical term for those objects that sit out at the edge of the solar system, beyond Neptune

The new work looked at those objects that have their movement made unstable because they interact with the orbit of Neptune. That instability meant they were harder to understand, so typically astronomers looking at a possible Planet Nine have avoided using them in their analysis.

Researchers instead looked towards those objects and tried to understand their movements. And, Dr Bogytin claimed, the best explanation is that they result from another, undiscovered planet.

300x250x1

The team carried out a host of simulations to understand how those objects’ orbits were affected by a variety of things, including the giant planets around them such as Neptune, the “Galactic tide” that comes from the Milky Way, and passing stars.

The best explanation was from the model that included Planet 9, however, Dr Bogytin said. They noted that there were other explanations for the behaviour of those objects – including the suggestion that other planets once influenced their orbit, but have since been removed – but claim that the theory of Planet 9 remains the best explanation.

A better understanding of the existence or not of Planet 9 will come when the Vera C Rubin Observatory is turned on, the authors note. The observatory is currently being built in Chile, and when it is turned on it will be able to scan the sky to understand the behaviour of those distant objects.

Planet Nine is theorised to have a mass about 10 times that of Earth and orbit about 20 times farther from the Sun on average than Neptune. It may take between 10,000 and 20,000 Earth years to make one full orbit around the Sun.

You may be tempted to ask how an entire planet could ‘hide’ in our solar system when we have zooming capabilities such as the new iPhone 15 has, but consider this: If Earth was the size of a marble, the edge of our solar system would be 11 kilometres away. That’s a lot of space to hide a planet.

[source:independent]

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Dragonfly: NASA Just Confirmed The Most Exciting Space Mission Of Your Lifetime – Forbes

Published

 on


NASA has confirmed that its exciting Dragonfly mission, which will fly a drone-like craft around Saturn’s largest moon, Titan, will cost $3.35 billion and launch in July 2028.

Titan is the only other world in the solar system other than Earth that has weather and liquid on the surface. It has an atmosphere, rain, lakes, oceans, shorelines, valleys, mountain ridges, mesas and dunes—and possibly the building blocks of life itself. It’s been described as both a utopia and as deranged because of its weird chemistry.

Set to reach Titan in 2034, the Dragonfly mission will last for two years once its lander arrives on the surface. During the mission, a rotorcraft will fly to a new location every Titan day (16 Earth days) to take samples of the giant moon’s prebiotic chemistry. Here’s what else it will do:

300x250x1
  • Search for chemical biosignatures, past or present, from water-based life to that which might use liquid hydrocarbons.
  • Investigate the moon’s active methane cycle.
  • Explore the prebiotic chemistry in the atmosphere and on the surface.

Spectacular Mission

“Dragonfly is a spectacular science mission with broad community interest, and we are excited to take the next steps on this mission,” said Nicky Fox, associate administrator of the Science Mission Directorate at NASA Headquarters in Washington. “Exploring Titan will push the boundaries of what we can do with rotorcraft outside of Earth.”

It comes in the wake of the Mars Helicopter, nicknamed Ingenuity, which flew 72 times between April 2021 and its final flight in January 2023 despite only being expected to make up to five experimental test flights over 30 days. It just made its final downlink of data this week.

Dense Atmosphere

However, Titan is a completely different environment to Mars. Titan has a dense atmosphere on Titan, which will make buoyancy simple. Gravity on Titan is just 14% of the Earth’s. It sees just 1% of the sunlight received by Earth.

function loadConnatixScript(document)
if (!window.cnxel)
window.cnxel = ;
window.cnxel.cmd = [];
var iframe = document.createElement(‘iframe’);
iframe.style.display = ‘none’;
iframe.onload = function()
var iframeDoc = iframe.contentWindow.document;
var script = iframeDoc.createElement(‘script’);
script.src = ‘//cd.elements.video/player.js’ + ‘?cid=’ + ’62cec241-7d09-4462-afc2-f72f8d8ef40a’;
script.setAttribute(‘defer’, ‘1’);
script.setAttribute(‘type’, ‘text/javascript’);
iframeDoc.body.appendChild(script);
;
document.head.appendChild(iframe);

loadConnatixScript(document);

(function()
function createUniqueId()
return ‘xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx’.replace(/[xy]/g, function(c) 0x8);
return v.toString(16);
);

const randId = createUniqueId();
document.getElementsByClassName(‘fbs-cnx’)[0].setAttribute(‘id’, randId);
document.getElementById(randId).removeAttribute(‘class’);
(new Image()).src = ‘https://capi.elements.video/tr/si?token=’ + ’44f947fb-a5ce-41f1-a4fc-78dcf31c262a’ + ‘&cid=’ + ’62cec241-7d09-4462-afc2-f72f8d8ef40a’;
cnxel.cmd.push(function ()
cnxel(
playerId: ’44f947fb-a5ce-41f1-a4fc-78dcf31c262a’,
playlistId: ‘aff7f449-8e5d-4c43-8dca-16dfb7dc05b9’,
).render(randId);
);
)();

The atmosphere is 98% nitrogen and 2% methane. Its seas and lakes are not water but liquid ethane and methane. The latter is gas in Titan’s atmosphere, but on its surface, it exists as a liquid in rain, snow, lakes, and ice on its surface.

COVID-Affected

Dragonfly was a victim of the pandemic. Slated to cost $1 billion when it was selected in 2019, it was meant to launch in 2026 and arrive in 2034 after an eight-year cruise phase. However, after delays due to COVID, NASA decided to compensate for the inevitable delayed launch by funding a heavy-lift launch vehicle to massively shorten the mission’s cruise phase.

The end result is that Dragonfly will take off two years later but arrive on schedule.

Previous Visit

Dragonfly won’t be the first time a robotic probe has visited Titan. As part of NASA’s landmark Cassini mission to Saturn between 2004 and 2017, a small probe called Huygens was despatched into Titan’s clouds on January 14, 2005. The resulting timelapse movie of its 2.5 hours descent—which heralded humanity’s first-ever (and only) views of Titan’s surface—is a must-see for space fans. It landed in an area of rounded blocks of ice, but on the way down, it saw ancient dry shorelines reminiscent of Earth as well as rivers of methane.

The announcement by NASA makes July 2028 a month worth circling for space fans, with a long-duration total solar eclipse set for July 22, 2028, in Australia and New Zealand.

Wishing you clear skies and wide eyes.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending