Connect with us

Science

Could NASA’s upcoming Nancy Grace Roman Telescope find 100,000 planets? – The Next Web

Published

 on


Due for launch in the mid-2020s, the Nancy Grace Roman Telescope is destined to become one of the great planet-hunting telescopes. Although the main mirror at the heart of the Roman Telescope is no larger than the one in the Hubble Space Telescope, the Roman mirror is just 25 percent as massive as its predecessor. With a wider field of view greater than Hubble, this next-generation telescope, formerly known as WFIRST, may discover 100,000 worlds orbiting other stars.

The Roman Telescope will study the sky in infrared wavelengths utilizing two methods to detect exoplanets. The first of these techniques, the transit method, measures dips of light seen from a star as a planet passes “in front of” its stellar parent as seen from Earth. The second method, gravitational microlensing, notes slight increases in light caused by the presence of an exoplanet.

Keep squinting, you’ll see it…

[embedded content]

Hit the play button above for a look at how exoplanets are found using the transit method, in this video provided by NASA.

Most exoplanets discovered so far were found using the transit method. Regular, periodic dimming of a star is the easiest way to find planets, but it only works for systems where an exoplanet passes between the star and Earth.

Astronomers currently know of nearly 4,400 planets orbiting other stars. Of these, about 2,800 were discovered using the transit method by the Kepler spacecraft (which ended its mission in 2018).

The same technique is currently being utilized by the Transiting Exoplanet Survey Satellite (TESS).

[embedded content]

Hit the play button above for a look at how gravitational microlensing can reveal the presence of distant exoplanets, in this video by NASA.

Gravitational microlensing, a brightening of light from a star, results when light from the star bends due to the gravitational forces of an exoplanet, in much the same way as light bends while passing through a convex lens in a telescope. This phenomenon was first predicted by Albert Einstein in his General Theory of Relativity.

“Microlensing events are rare and occur quickly, so you need to look at a lot of stars repeatedly and precisely measure brightness changes to detect them. Those are exactly the same things you need to do to find transiting planets, so by creating a robust microlensing survey, Roman will produce a nice transit survey as well,” said astrophysicist Benjamin Montet of the University of New South Wales in Sydney.

Credit: NASA
Nancy Grace Roman, for whom this telescope is named, was the first Chief of Astronomy in the Office of Space Science at NASA Headquarters and the first woman to hold an executive position at NASA. Seen here in 1962, she oversaw the development of both the Hubble and Cosmic Background Explorer programs.

While the transit method works best for systems where the exoplanet orbits to its parent star (creating a larger “silhouette”), gravitational microlensing is most useful in systems where the planet orbits far from its star. Tomes of this data are already recorded, some of it hinting at unknown exoplanets, awaiting confirmation by researchers.

“The fact that we’ll be able to detect thousands of transiting planets just by looking at microlensing data that’s already been taken is exciting. It’s free science,” said Jennifer Yee, astrophysicist at the Center for Astrophysics, stated.

Both of these techniques are able to compliment one another, providing astronomers a means to verify data about exoplanets recorded from around alien stars.

Going rogue

The Nancy Grace Roman Telescope is likely to find rogue planets — worlds traveling through space, untethered to any star. These orphan planets are thought to range in size from small, rocky worlds smaller than Mars, up to gas giants similar to Jupiter and Saturn. Some of these may be accompanied by moons.

“Because of Hubble and other telescopes, we’ve now discovered that there are probably planets around every star, or virtually every star. There are solar systems around most stars. And the fact that we’re here on a planet, Earth, means that it’s likely there’s lots of other Earths out there” — John Grunsfeld, astronaut

Collisions and close encounters between planets in unstable solar systems might throw exoplanets free of the gravitational grip of their parent star. Others might form in interstellar space, never knowing the warm embrace of a stellar parent.

Even rouge planets, like those that might be found using the Roman Telescope, might be accompanied by moons, like this icy satellite pictured here, orbiting a planet larger than Neptune.
Credit: The Cosmic Companion / Created in Universe Sandbox
Even rouge planets, like those that might be found using the Roman Telescope, might be accompanied by moons, like this icy satellite pictured here, orbiting a planet larger than Neptune.

“The microlensing signal from a rogue planet only lasts between a few hours and a couple of days and then is gone forever. This makes them difficult to observe from Earth, even with multiple telescopes. Roman is a game-changer for rogue planet searches,” Matthew Penny, assistant professor of physics and astronomy at Louisiana State University in Baton Rouge, stated.

About three-quarters of the planets found by the Roman Telescope are likely to be gas giants, like Jupiter and Saturn, or ice giants similar to Uranus and Neptune.

A majority of smaller worlds are likely to be mini-Neptunes, possessing between four and eight times as much mass as Earth. Planets like this are known to be common in other planetary families, although none exist in our own solar system.

A fraction of worlds seen by Roman are likely to be found within the habitable, or Goldilocks, zone around their parent star, where temperatures are neither too hot, nor too cold, for water to pool on their surface. Gas giants could be the centers of their own systems of water-rich moons, like Europa and Enceladus, warmed by tidal forces and geochemical processes.

Your Father was a Roman?

One advantage of the Roman telescope is its wide field-of-view. Much like the way binoculars see more of the sky at one time than a telescope, this instrument is designed to see large swatches of sky with each observation.

The Nancy Grace Roman Telescope will be capable of taking image at a resolution equal to Hubble, but with a field-of-view 100 times greater than that instrument. Every day, it will gather 500 times more data than its counterpart.

[embedded content]

Hit the play button above for a look at how the Nancy Grace Roman Telescope will compare to Hubble in clarity and field-of-view, in this video by L. Hustak (STScI) / Goddard Media Studios.

One challenge with the Roman Telescope is that this is such a revolutionary instrument, follow-up observations are exceptionally difficult — there is no other instrument capable of doing what the Nancy Grace Roman Telescope will do.

“The potential of [The Roman Telescope] to detect large numbers of transiting planets is complicated by the difficulty of directly confirming those planets by traditional methods. In general, because the host stars of [Roman]-detected transiting planets will be so faint, it will not be possible to conduct followup RV observations to confirm their masses and rule out false positives,” Yee and her team wrote in the Publications of the Astronomical Society of the Pacific in 2017.

Located a million miles away from Earth, the Nancy Grace Roman Telescope will see far deeper into the Milky Way than previous missions, although just over a small patch of sky. This instrument will spend months staring at a single point in the sky, allowing it to find hundreds of unknown worlds using microlensing.

“The universe could be teeming with rogue planets and we wouldn’t even know it. We would never find out without undertaking a thorough, space-based microlensing survey like Roman is going to do,” explains Scott Gaudi, a professor of astronomy at Ohio State University.

Stellar systems explored by Kepler averaged a distance of just 2,000 light years from Earth, seen within a square totaling 115 degrees square. The TESS Telescope observes nearly the entire sky, but only examines systems within 150 light years from Earth. The Roman Telescope will be capable of finding exoplanets as far as 26,000 light years from our home world.

Future astronomers will spend years or decades poring through data collected by The Nancy Grace Roman Telescope, in the search for worlds beyond our solar system.

This article was originally published on The Cosmic Companion by James Maynard, founder and publisher of The Cosmic Companion. He is a New England native turned desert rat in Tucson, where he lives with his lovely wife, Nicole, and Max the Cat. You can read this original piece here.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Inspiration4 Lift Off: SpaceX Launches World’s First All-Citizen Mission in Earth’s Orbit – Illinoisnewstoday.com

Published

 on


Tampa, Florida (WFLA) — SpaceX made history on Wednesday night when it launched the world’s first all-civil mission to get going from the Space Coast, Florida.

The Inspiration4 mission took off from Launch Complex 39A at NASA’s Kennedy Space Center around 8:03 pm on Wednesday. The four crew members on the SpaceX Dragon spacecraft were launched onto a reusable Falcon 9 rocket and later separated from the spacecraft and landed on the drone.

The mission’s five-hour launch window began at 8:02 EST. The window was very large, as the crew was sent to orbit the Earth rather than the International Space Station, and therefore did not have such strict time constraints.

The crew is set to travel 350 miles above the surface of the Earth, about 100 miles higher than the International Space Station.

“This is important and historic, because it’s the best time humans have been in orbit since the Hubble Space Telescope mission,” said Benjireed, SpaceX’s manned spaceflight director.

(Photo provided by SpaceX)

The crew will spend three days in orbit to participate in research experiments on human health and performance. We hope that the results of our research will apply not only to future space flight, but also to human health here on Earth.

Inspiration4’s main goal is to provide and inspire support for St. Jude Children’s Research Hospital. They want to raise $ 200 million for St. Jude in a three-day mission.

According to SpaceX, each of the four members of the crew was chosen to represent the pillars of a mission of prosperity, generosity, hope and leadership. The Inspiration 4 crew and the pillars they represent are:

  • leadership: 38 years old Jared Isaacman – Founder and CEO of Shift4Payments
  • Hope: 29-year-old Haley Arseno – Doctor assistants and childhood cancer survivors treated with St. Jude
  • Generosity: 41 years old Chris Sembroski – Lockheed Martin US Air Force veteran and aerospace employee
  • prosperity: 51 years old Dr. Cyan Proctor – Entrepreneurs, educators, trained pilots, and the active voice of the space exploration community

SpaceX trained all four crew members as commercial astronauts on Falcon 9 and Dragon spacecraft. The crew was trained in orbital mechanics, microgravity, weightlessness, other stress tests, emergency preparedness, and spacesuit training.

The mission was funded by Isaacman in a private transaction with SpaceX. Isaacman has also invested $ 100 million towards a funding target for the St. Jude mission.

Inspiration4 Lift Off: SpaceX Launches World’s First All-Citizen Mission in Earth’s Orbit

Source link Inspiration4 Lift Off: SpaceX Launches World’s First All-Citizen Mission in Earth’s Orbit

Adblock test (Why?)



Source link

Continue Reading

Science

'Flying' microchips could ride the wind to track air pollution – Yahoo Movies Canada

Published

 on


Researchers have created a winged microchip around the size of a sand grain that may be the smallest flying device yet made, Vice has reported. They’re designed to be carried around by the wind and could be used in numerous applications including disease and air pollution tracking, according to a paper published by Nature. At the same time, they could be made from biodegradable materials to prevent environmental contamination. 

The design of the flyers was inspired by spinning seeds from cottonwood and other trees. Those fall slowly by spinning like helicopters so they can be picked up by the wind and spread a long distance from the tree, increasing the range of the species. 

The team from Northwest University ran with that idea but made it better, and smaller. “We think we’ve beaten biology… we’ve been able to build structures that fall in a more stable trajectory at slower terminal velocities than equivalent seeds,” said lead Professor John A. Rogers. “The other thing… was that we were able to make these helicopter flyer structures that are much smaller than seeds you would see in the natural world.”  

They’re not so small that the aerodynamics starts to break down, though. “All of the advantages of the helicopter design begin to disappear below a certain length scale, so we pushed it all the way, as far as you can go or as physics would allow,” Rogers told Vice. “Below that size scale, everything looks and falls like a sphere.”

The devices are also large enough to carry electronics, sensors and power sources. The team tested multiple versions that could carry payloads like antenna so that they could wireless communicate with a smartphone or each other. Other sensors could monitor things like air acidity, water quality and solar radiation. 

The flyers are still concepts right now and not ready to deploy into the atmosphere, but the team plans to expand their findings with different designs. Key to that is the use of biodegradable materials so they wouldn’t persist in the environment. 

“We don’t think about these devices… as a permanent monitoring componentry but rather temporary ones that are addressing a particular need that’s of finite time duration,” Rogers said. “That’s the way that we’re envisioning things currently: you monitor for a month and then the devices die out, dissolve, and disappear, and maybe you have to redeploy them.”

Adblock test (Why?)



Source link

Continue Reading

Science

NASA splits human spaceflight unit in two, reflecting new orbital economy – WION

Published

 on


” class=”ff-og-image-inserted”>

NASA is splitting its human spaceflight department into two separate bodies – one centered on big, future-oriented missions to the moon and Mars, the other on the International Space Station and other operations closer to Earth.

The reorganization, announced by NASA chief Bill Nelson on Tuesday, reflects an evolving relationship between private companies, such as SpaceX, that have increasingly commercialised rocket travel and the federal agency that had exercised a US monopoly over spaceflight for decades.

Nelson said the shake-up was also spurred by a recent proliferation of flights and commercial investment in low-Earth orbit even as NASA steps up its development of deep-space aspirations.

Also Read | Cracks on ISS a ‘serious issue’, says former NASA astronaut

“Today is more than organizational change,” Nelson said at a press briefing. “It’s setting the stage for the next 20 years, it’s defining NASA’s future in a growing space economy.”

The move breaks up NASA’s Human Exploration and Operations Mission Directorate, currently headed by Kathy Leuders, into two separate branches.

Leuders will keep her associate administrator title as head of the new Exploration Systems Development Mission Directorate, focusing on NASA’s most ambitious, long-term programs, such as plans to return astronauts to the moon under project Artemis, and eventual human exploration of Mars.

Also Read | NASA’s Ingenuity helicopter is finding it tougher to fly on Mars

A retired deputy associate administrator, James Free, who played key roles in NASA’s space station and commercial crew and cargo programs, will return to the agency as head of the new Space Operations Mission Directorate.

His branch will primarily oversee more routine launch and spaceflight activities, including missions involving the space station and privatization of low-Earth orbit, as well as sustaining lunar operations once those have been established.

Also Read | NASA’s Hubble Telescope captures massive ‘eye’ of dying star

“This approach with two areas focused on human spaceflight allows one mission directorate to operate in space while the other builds future space systems,” NASA said in a press release announcing the move.

The announcement came less than a week after SpaceX, which had already flown numerous astronaut missions and cargo payloads to the space station for NASA, launched the first all-civilian crew ever to reach orbit and returned them safely to Earth.

Adblock test (Why?)



Source link

Continue Reading

Trending