Connect with us

Science

DC's Nick Proach's space model work is the right stuff – Dawson Creek Mirror

Published

 on


Much of Nick Proach’s work is out of this world.

Dawson Creek’s Proach is all about the art and detail behind space model making. While firmly entrenched in models from the real world – Proach is still all about the final frontier.

No Star Destroyers or Klingon Birds of Prey here – Proach is all about real world space, sea, and air exploration.

Bringing his passion for space exploration and history together with self-taught model making skills over the years results in precision accurate scaling and detailing, which transforms a regular space model project into a true work of art.

Proach’s models range in size from a four inch tall model of the first Goddard liquid-fueled rocket – to a 16 foot tall Saturn V moon rocket – to a 28 foot wide communication satellite – it is safe to say Proach’s work is in the literal, and figurative stars.

“I’ve been into the space program since I was a kid. Alan Shepard, John Glenn and more,” he says.

In 1971, a younger Proach built a model of the Apollo 15 lunar rover in advance of the mission launch. He called up a couple of television stations where he lived in Toronto at the time.

“A week before the launch, CTV’s Bob Conroy called me up and asked to see the model. I was given a flight plan, lunar procedures, and asked to create the entire Apollo 15 landing site complete with experiments for use during the CTV’s coverage of the moonwalks.”

He did a number of freelance contracts and by 1994 Proach was launching his spacecraft more full time and focused.

“I started picking up contracts.”

Some of these contracts include work with an Ottawa Aerospace Museum, NASA, the US Air Force, the odd television show and movie, aerospace companies, including Space X, a few astronauts, and a documentary produced by an actor who has played astronaut Jim Lovell – one Tom Hanks. 

Proach has also met and knows a number of astronauts, including a few of them that actually walked on the moon.

“That first Apollo mission really grabbed me. Those first men on the moon flipped me from building cars and sea ships to spacecraft.”

Some of his space models have been in space, flying in or with their real-life counterparts.

“In 2002 NASA was working on components for the International Space Station, and some of those space station models built for NASA became training components,” says Proach. His work has flown on both the US Space Shuttle in 2002 and a Russian Soyuz spacecraft in 2008.

“Today 3D printers can really help with creating individual pieces and parts,” he says.

His work is on display in a small museum – not much larger than those original Apollo astronaut capsules – right here in Mile Zero at the B2 Auto Zone on 102 Avenue. Tours of small groups can be arranged by appointment.

For more than 50 years Proach has kept close tabs on Canadian, US, and Russian space programs. He can produce a model of any aerospace subject.

An up close examination of the models brings to reality that astronauts have been to space – in what amounts to a large soup can. Re-entry into the atmosphere could be as harrowing an experience as blast off, with nothing but rocket fuel sending you into orbit.

“Upon re-entry they are going about 25,000 miles per hour. Astronauts accept the risk, and they realize they are test pilots and the risk is something they don’t think much about. They would roll with it and said ‘we had to deal what we had to deal with.’ That’s the way these guys are.”

In 2020 Proach and his wife Connie took off from the Sunshine Coast and splashed down in Mile Zero.

“Another guy I got to know was “the loneliest man in the Universe” – Al Worden, who orbited the moon alone while David Scott and Jim Irwin were on the moon during Apollo 15 in 1971.”

Proach says while there are a fair amount of space modellers – the market for people looking for these types of models is smaller.

“It is a pretty narrow market – but there are a number of groups that follow the history, and know what happened. Quite a number of customers are in the US. We don’t build too many – then again they are not mass produced,” he says.

A rover signed by the last crew on the moon, Harrison Schmitt and Gene Cernan, sits close by.

The largest model Proach constructed was a project for Expo ’86, a satellite some 28 feet plus in size.

In his shop, Proach has models of the first rocket to ever launch from Cape Canaveral, a USSR Yuri Gagarin model, an Apollo 9 spacecraft signed by the entire crew, a Gemini Spacecraft after splashdown, John Glenn’s Mercury spacecraft, as well as some more modern ones such as the Boeing Starliner and the SpaceX Dragon II spacecrafts, and NASA’s new Space Launch System, the replacement for the space shuttle, which is tentatively scheduled to lift off on its maiden flight to the moon in late August.

“This will make an unmanned trip around the moon, then in about 2 years, a four person crew will go up,” he says.

Lift-Off.

Adblock test (Why?)



Source link

Continue Reading

Science

Tonga volcano blast was unusual, could even warm the Earth – Kelowna Capital News – Kelowna Capital News

Published

 on


When an undersea volcano erupted in Tonga in January, its watery blast was huge and unusual — and scientists are still trying to understand its impacts.

The volcano, known as Hunga Tonga-Hunga Ha’apai, shot millions of tons of water vapor high up into the atmosphere, according to a study published Thursday in the journal Science.

The researchers estimate the eruption raised the amount of water in the stratosphere — the second layer of the atmosphere, above the range where humans live and breathe — by around 5%.

Now, scientists are trying to figure out how all that water could affect the atmosphere, and whether it might warm Earth’s surface over the next few years.

“This was a once-in-a-lifetime event,” said lead author Holger Voemel, a scientist at the National Center for Atmospheric Research in Colorado.

Big eruptions usually cool the planet. Most volcanoes send up large amounts of sulfur, which blocks the sun’s rays, explained Matthew Toohey, a climate researcher at the University of Saskatchewan who was not involved in the study.

The Tongan blast was much soggier: The eruption started under the ocean, so it shot up a plume with much more water than usual. And since water vapor acts as a heat-trapping greenhouse gas, the eruption will probably raise temperatures instead of lowering them, Toohey said.

It’s unclear just how much warming could be in store.

Karen Rosenlof, a climate scientist at the National Oceanic and Atmospheric Administration who was not involved with the study, said she expects the effects to be minimal and temporary.

“This amount of increase might warm the surface a small amount for a short amount of time,” Rosenlof said in an email.

The water vapor will stick around the upper atmosphere for a few years before making its way into the lower atmosphere, Toohey said. In the meantime, the extra water might also speed up ozone loss in the atmosphere, Rosenlof added.

But it’s hard for scientists to say for sure, because they’ve never seen an eruption like this one.

The stratosphere stretches from around 7.5 miles to 31 miles (12 km to 50 km) above Earth and is usually very dry, Voemel explained.

Voemel’s team estimated the volcano’s plume using a network of instruments suspended from weather balloons. Usually, these tools can’t even measure water levels in the stratosphere because the amounts are so low, Voemel said.

Another research group monitored the blast using an instrument on a NASA satellite. In their study, published earlier this summer, they estimated the eruption to be even bigger, adding around 150 million metric tons of water vapor to the stratosphere — three times as much as Voemel’s study found.

Voemel acknowledged that the satellite imaging might have observed parts of the plume that the balloon instruments couldn’t catch, making its estimate higher.

Either way, he said, the Tongan blast was unlike anything seen in recent history, and studying its aftermath may hold new insights into our atmosphere.

—Maddie Burakoff, The Associated Press

RELATED: Flights sent to assess Tonga damage after volcanic eruption

EnvironmentScienceVolcano

Adblock test (Why?)



Source link

Continue Reading

Science

NASA is slamming a spacecraft into an asteroid on Monday to test planetary defence – CBC.ca

Published

 on


On Monday, in what seems like a scene out of a science fiction movie, NASA will slam a spacecraft into a distant asteroid to see whether it can nudge its orbit — all in an effort to test a way to protect Earth from any potential future threats.

The good news is that there’s no need to panic: The asteroid, which is part of a binary — or two-bodied — system, is not a threat to our planet, and there are no known ones that are headed our way for at least the next 100 years. However, space agencies like the U.S. National Aeronautics and Space Administration want to be prepared should there ever be a threat.

NASA’s Double Asteroid Redirection Test (DART) is testing a way in which a spacecraft may be able to nudge an asteroid on a collision course with Earth out of its orbit.

At 7:14 p.m. ET on Monday, the refrigerator-sized spacecraft will plunge itself into Dimorphos — a moonlet that orbits its larger companion, Didymos — at roughly 6.6 km/s.

The goal isn’t to knock Dimorphos out of orbit but rather to change its 12-hour orbit around Didymos by 10 minutes. This means that scientists will know within roughly 12 hours whether they were successful.

So why target a binary asteroid system rather than a single asteroid to see whether you can change its orbit around the sun?

This image of the light from asteroid Didymos and its orbiting moonlet, Dimorphos, is a composite of 243 images taken by the Didymos Reconnaissance and Asteroid Camera for Optical navigation (DRACO) on July 27. (NASA JPL DART Navigation Team)

“A binary system was perfect for this test,” said Mallory DeCoster, a senior scientist at Johns Hopkins University’s Applied Physics Laboratory in Maryland and part of the DART Impact Modeling Working Group.

For one, the size of Dimorphos — about 164 metres across — is perfect to illustrate whether this would be an effective way of deflecting asteroids that pose a threat to Earth. Didymos is 780 metres across.

“But then the other piece is, if we were to impact a single asteroid, in order to characterize if we changed its orbit, we would have to wait until it completed its orbit around the sun, which could take many, many years.”

The other advantage is that the binary system is relatively close to us, astronomically speaking, at just 11 million kilometres away.

Shooting gallery

NASA’s Center for Near-Earth Object Studies says that more than 90 per cent of near-Earth objects (NEOs) bigger than one kilometre have already been discovered. But that doesn’t mean we’re out of the woods when it comes to Potentially Hazardous Asteroids (PHAs).

In 2013, the Chelyabinsk asteroid — which was roughly 20 metres in diameter— exploded over parts of Russia, injuring about 1,000 people and serving as a reminder of how even a small asteroid can be dangerous.

In February 2013, a meteorite contrail was seen over Chelyabinsk, Russia, a city close to the Ural Mountains located about 1,500 kilometres east of Moscow. The Chelyabinsk asteroid, which was roughly 20 metres in diameter, exploded over parts of Russia, injuring about 1,000 people. (Chelyabinsk.ru, Yekaterina Pustynnikova/The Associated Press)

Basically, Earth flies through a shooting gallery in space. There are small chunks of debris that burn up in our atmosphere as meteors; bigger ones, like Chelyabinsk; and then even bigger ones that can be catastrophic — all left over from the formation of our solar system.

That’s why space agencies like NASA and the European Space Agency have been trying to develop ways to deflect or nudge a PHA so that its orbit changes and poses no threat to Earth.

Mike Daly, a professor at York University’s Lassonde School of Engineering in Toronto and a co-investigator on DART, said one of the most popular concepts is deflecting asteroids before they become a real threat. But that means we need to have advance warning that one is headed our way.

“So the simplest method is the one that DART is doing, which is essentially to take a spacecraft at high speed and crash it into the asteroid and use that transfer of the energy from the spacecraft to the asteroid to move it along,” he said.

This infographic shows the potential effect of DART’s impact on the orbit of Dimorphos. (NASA/Johns Hopkins APL)

However, the science behind asteroid deflection in this manner is about more than just the combination of the spacecraft’s size and incredibly high speed, called a hypervelocity impact.

“In a hypervelocity impact, you induce this pressure wave into the target that causes a lot of new physics to happen,” Johns Hopkins University’s DeCoster said.

“So what will happen, or what we think will happen, is that the size of the spacecraft might actually not matter that much. It might actually be: How does the asteroid respond to this pressure wave that is induced due to the hypervelocity impact? And we think that it will likely spew out a lot of material in the form of ejecta. And this ejecta might actually have a major component for changing the orbit. So much ejecta might get spewed out that that piece might matter more than the incoming energy from the spacecraft in changing its orbit.”

The DART team hopes that an onboard camera, called DRACO, will show the close approach and then suddenly go black, which would be indicative of an impact.

This map shows the 38 telescopic facilities in space and around the globe that are expected to observe the Didymos asteroid system in support of DART’s global observation campaign after impact. Numerical figures in parentheses next to the telescope names indicate the telescope size. (NASA/Johns Hopkins APL/Nancy Chabot/Mike Halstad)

But there’s a straggler tagging along behind DART, by about three minutes: the Italian Space Agency’s Light Italian Cubesat for Imaging of Asteroids, or LICIACube. Its job is to photograph the impact, study the plume of ejecta and help determine the morphology of the asteroid, as they can be made of iron, rock or just rocky clumps held together by gravity.

As this is the first test of a form of planetary defence, scientists are eagerly anticipating not only the impact of the event itself but what they will learn from it and, most importantly, what this may mean for the future of protecting Earth in the future. Telescopes from around the world will be observing the event and collecting followup data.

“We’re really the first generation that can protect ourselves from these potentially catastrophic impacts,” York University’s Daly said. “And, you know, fortunately the really catastrophic ones don’t happen very often, but they could happen, and never before have we been able to change our fate. So I think it’s really up to us, given the potentially large consequences of not paying attention and our ability to do it.”

The event will be broadcast on NASA TV, which is available online and through its app.

Adblock test (Why?)



Source link

Continue Reading

Science

‘Planetary defence’: NASA targets asteroid in space collision – Al Jazeera English

Published

 on


After NASA deliberately smashes a car-sized spacecraft into an asteroid next week, it will be up to the European Space Agency’s Hera mission to investigate the “crime scene” and uncover the secrets of these potentially devastating space rocks.

NASA’s Double Asteroid Redirection Test (DART) aims to collide with the asteroid moonlet Dimorphos on Monday night, hoping to slightly alter its trajectory – the first time such an operation has been attempted.

While Dimorphos is 11 million kilometres (6.8 million miles) away and poses no threat to Earth, the mission is a test run in case the world someday needs to deflect an asteroid from heading our way.

Astronomers around the world will watch DART’s impact and its effect will be closely followed to see if the mission passed the test.

The European Space Agency’s Hera mission, named after the ancient Greek queen of the gods, will follow in its footsteps.

The Hera spacecraft is planned to launch in October 2024, aiming to arrive at Dimorphos in 2026 to measure the exact impact DART had on the asteroid.

Scientists are not only excited to see DART’s crater, but also to explore an object very much out of this world.

[embedded content]

‘A new world’

Dimorphos, which orbits a larger asteroid Didymos as they hurtle together through space, provides not only a “perfect testing opportunity for a planetary defence experiment, but it is also a completely new environment”, Hera Mission Manager Ian Carnelli said.

Hera will be loaded with cameras, spectrometers, radars and even toaster-sized nano-satellites to measure the asteroid’s shape, mass, chemical composition and more.

NASA’s Bhavya Lal said it was critically important to understand the size and composition of such asteroids.

“If an asteroid is made up of, for example, loose gravel, approaches to disrupt it may be different than if it was metal or some other kind of rock,” she told the International Astronautical Congress in Paris this week.

So little is known about Dimorphos that scientists will discover “a new world” at the same time as the public on Monday, Hera mission Principal Investigator Patrick Michel said.

“Asteroids are not boring space rocks – they are super exciting because they have a great diversity” in size, shape and composition, Michel said.

Because they have low gravity compared with Earth, matter there could behave completely differently than expected. “Unless you touch the surface, you cannot know the mechanical response,” he said.

[embedded content]

‘Behaved almost like fluid’

For example, when a Japanese probe dropped a small explosive near the surface of the Ryugu asteroid in 2019, it was expected to make a crater of two to three metres. Instead, it blasted a 50-metre hole.

“There was no resistance,” Michel said. “The surface behaved almost like a fluid [rather than solid rock]. How weird is that?”

One way the Hera mission will test Dimorphos will be to land a nano-satellite on its surface, in part to see how much it bounces.

Binary systems such as Dimorphos and Didymos represent about 15 percent of known asteroids, but have not yet been explored.

With a diameter of just 160 metres – around the size of the Great Pyramid of Giza – Dimorphos will also be the smallest asteroid ever studied.

Learning about the impact of DART is not only important for planetary defence, Michel said, but also for understanding the history of our solar system, where most cosmic bodies were formed through collisions and are now riddled with craters.

That is where DART and Hera could shine a light not just on the future but on the past.

This computer-generated image shows the impact of the DART projectile on the binary asteroid system Didymos [European Space Agency via AFP]

Adblock test (Why?)



Source link

Continue Reading

Trending