adplus-dvertising
Connect with us

Science

Earth’s innermost layer is a 400-mile-wide ball of iron, new study suggests

Published

 on

Scientists have long wondered what lies at the very center of the Earth, and the latest research is putting weight behind a theory that our planet has a distinct ball of iron within its metallic core.

Beneath the outermost crust, the mantle and the molten-liquid outer core lies the Earth’s solid metal center — which actually has a hidden layer, or an “innermost inner core” within, according to a new study published Tuesday in the journal Nature Communications.

Earth’s inner core may have stopped turning and could go into reverse, study suggests

 

The monumental finding suggests the Earth has five major layers instead of four, and offered new details scientists could use to help unlock some of the oldest mysteries about our planet and how it was formed.

Geoscientists first suggested that the Earth’s core might have an additional, imperceptible layer about 20 years ago, according to a news release. Now, using new data sets collected by measuring the seismic waves of earthquakes as they passed through the Earth’s center, researchers have finally detected that innermost core, the new study said.

Seismic waves are vibrations that run within or along the surface of the Earth and through its inner layers as a result of earthquakes, volcanoes or other means.

“In this study, for the first time, we report observations of seismic waves originating from powerful earthquakes traveling back and forth from one side of the globe to the other up to five times like a ricochet,” study coauthor Dr. Thanh-Son Phạm, a seismologist and postdoctoral fellow at the Research School of Earth Sciences at the Australian National University in Canberra, in an email.

Detection through quake activity

The reason this layer had not been previously observed in more detail is because its composition is so similar to what lies above it, Pham said. Both this newly detected center — which the study reports is likely a 400-mile-wide (644-kilometer-wide) ball of metal — and its outer shell are made of iron-nickel alloy, with trace amounts of other elements.

“Additionally, the transition from the innermost (solid) ball to the outer shell of the inner core (also solid shell) seems rather gradational than sharp,” Pham said. “That is why we cannot observe it via direct reflections of seismic waves from it.”

Earth's solid center has a hidden, innermost layer made of an iron-nickel alloy, according to a new study.

Using instruments that detect the vibrational waves, researchers found the innermost inner core has a distinct anisotropy, which is a property of a substance that allows it to take on different characteristics depending on the angle from which it’s approached. An example of an object that’s anisotropic is a piece of wood: It’s much easier to hack a piece of firewood apart by hitting it along the direction of its grain than against it.

It is that feature that distinguishes the innermost core.

When it came to assessing the Earth’s core, researchers looked at how fast seismic waves traveled through it in different directions, and they found the innermost inner core changed the speed of those waves in a different way than the layer above it, the center core’s outer shell.

The study team was able to detect the "innermost inner core" by analyzing the speed of seismic waves traveling through it in different directions.

Detecting the new layer more than 1,000 miles (1,600 kilometers) beneath our feet is significant. The presence of a distinct innermost core could give scientists a better understanding of Earth’s magnetic field and how it has evolved and will continue to do so.

The new finding also “gives us a glimpse of what might have happened with other planets,” Pham said. “Take Mars as an example. We don’t understand yet why (Mars’ magnetic field) ceased to exist in the past.”

728x90x4

Source link

Continue Reading

Science

NASA's Voyager 1 resumes sending engineering updates to Earth – Phys.org

Published

 on


NASA’s Voyager 1 spacecraft is depicted in this artist’s concept traveling through interstellar space, or the space between stars, which it entered in 2012. Credit: NASA/JPL-Caltech

For the first time since November, NASA’s Voyager 1 spacecraft is returning usable data about the health and status of its onboard engineering systems. The next step is to enable the spacecraft to begin returning science data again. The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars).

Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the was still receiving their commands and otherwise operating normally. In March, the Voyager engineering team at NASA’s Jet Propulsion Laboratory in Southern California confirmed that the issue was tied to one of the spacecraft’s three onboard computers, called the flight data subsystem (FDS). The FDS is responsible for packaging the science and engineering data before it’s sent to Earth.

300x250x1

The team discovered that a responsible for storing a portion of the FDS memory—including some of the FDS computer’s software code—isn’t working. The loss of that code rendered the science and engineering data unusable. Unable to repair the chip, the team decided to place the affected code elsewhere in the FDS memory. But no single location is large enough to hold the section of code in its entirety.

So they devised a plan to divide affected the code into sections and store those sections in different places in the FDS. To make this plan work, they also needed to adjust those code sections to ensure, for example, that they all still function as a whole. Any references to the location of that code in other parts of the FDS memory needed to be updated as well.

NASA’s Voyager 1 resumes sending engineering updates to Earth
After receiving data about the health and status of Voyager 1 for the first time in five months, members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20. Credit: NASA/JPL-Caltech

The team started by singling out the responsible for packaging the spacecraft’s engineering data. They sent it to its new location in the FDS memory on April 18. A radio signal takes about 22.5 hours to reach Voyager 1, which is over 15 billion miles (24 billion kilometers) from Earth, and another 22.5 hours for a signal to come back to Earth. When the mission flight team heard back from the spacecraft on April 20, they saw that the modification had worked: For the first time in five months, they have been able to check the health and status of the spacecraft.

During the coming weeks, the team will relocate and adjust the other affected portions of the FDS software. These include the portions that will start returning science data.

Voyager 2 continues to operate normally. Launched over 46 years ago, the twin Voyager spacecraft are the longest-running and most distant spacecraft in history. Before the start of their interstellar exploration, both probes flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune.

Provided by
NASA

Citation:
NASA’s Voyager 1 resumes sending engineering updates to Earth (2024, April 22)
retrieved 22 April 2024
from https://phys.org/news/2024-04-nasa-voyager-resumes-earth.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Osoyoos commuters invited to celebrate Earth Day with the Leg Day challenge – Oliver/Osoyoos News – Castanet.net

Published

 on


Osoyoos commuters can celebrate Earth Day as the Town joins in on a national commuter challenge known as “Leg Day,” entering a chance to win sustainable transportation prizes.

The challenge, from Earth Day Canada, is to record 10 sustainable commutes taken without a car.

300x250x1

“Cars are one of the biggest contributors to gas emissions in Canada,” reads an Earth Day Canada statement. “That’s why, Earth Day Canada is launching the national Earth Day is Leg Day Challenge.”

So far, over 42.000 people have participated in the Leg Day challenge.

Participants could win an iGo electric bike, public transportation for a year, or a gym membership.

The Town of Osoyoos put out a message Monday promoting joining the national program.

For more information on the Leg Day challenge click here.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Early bird may dodge verticillium woes in potatoes – Manitobe Co-Operator

Published

 on


Verticillium wilt is a problem for a lot of crops in Manitoba, including canola, sunflowers and alfalfa.

Read Also

Field stress can translate to potato skin flaws.

In potatoes, the fungus Verticillium dahlia is the main cause of potato early die complex. In a 2021 interview with the Co-operator, Mario Tenuta, University of Manitoba soil scientist and main investigator with the Canadian Potato Early Dying Network, suggested the condition can cause yield loss of five to 20 per cent. Other research from the U.S. puts that number as high as 50 per cent.

It also becomes a marketing issue when stunted spuds fall short of processor preferences.

Verticillium in potatoes can significantly reduce yield and, being soil-borne, is difficult to manage.

Preliminary research results suggest earlier planting of risk-prone fields could reduce losses, in part due to colder soil temperatures earlier in the season.

Unlike other potato fungal issues that can be addressed with foliar fungicide, verticillium hides in the soil.

“Commonly we use soil fumigation and that’s very expensive,” said Julie Pasche, plant pathologist with North Dakota State University.

There are options. In 2017, labels expanded for the fungicide Aprovia, Syngenta’s broad-spectrum answer for leaf spots or powdery mildews in various horticulture crops. In-furrow verticillium suppression for potatoes was added to the label.

There has also been interest in biofumigation. Mustard has been tagged as a potential companion crop for potatoes, thanks to its production of glucosinolate and the pathogen- and pest-inhibiting substance isothiocyanate.

Last fall, producers heard that a new, sterile mustard variety specifically designed for biofumigation had been cleared for sale in Canada, although seed supplies for 2024 are expected to be slim. AAC Guard was specifically noted for its effectiveness against verticillium wilt.

Timing is everything

Researchers at NDSU want to study the advantage of natural plant growth patterns.

“What we’d like to look at are other things we can do differently, like verticillium fertility management and water management, as well as some other areas and how they may be affected by planting date,” Pasche said.

The idea is to find a chink in the fungus’s life cycle.

Verticillium infects roots in the spring. From there, it colonizes the plant, moving through the root vascular tissue and into the stem. This is the cause of in-season vegetative wilting, Pasche noted.

As it progresses, plant cells die, leaving behind tell-tale black dots on dead tissue. Magnification of those dots reveals what look like dark bunches of grapes — tiny spheres containing melanized hyphae, a resting form of the fungus called microsclerotia.

The dark colour comes from melanin, the same pigment found in human skin. This pigmentation protects the microsclerotia from ultraviolet light.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending