Europe’s CHEOPS mission will shed light on strange new worlds - EarthSky | Canada News Media
Connect with us

Science

Europe’s CHEOPS mission will shed light on strange new worlds – EarthSky

Published

 on



<!–

googletag.cmd.push(function() googletag.display(‘post_link_unit’); );

–>

Artist’s concept of the just-launched CHEOPS space telescope, which will study hundreds of exoplanets in greater detail than ever before. Image via ESA/ ATG medialab/ DLR.

After a one-day delay, the European Space Agency (ESA) successfully launched its CHEOPS mission last week, on the morning of December 18, 2019, from the spaceport in Kourou, French Guiana. CHEOPS is the first ESA mission dedicated to studying exoplanets, those distant worlds orbiting other stars. NASA’s planet-hunting space missions, first Kepler and now TESS, have been finding new exoplanets. CHEOPS will study hundreds of exoplanets already known to exist – out of 4,000-plus now confirmed – to determine their sizes, masses, densities and possible atmospheres.

In this way, CHEOPS will take us some steps along the road of finding out what many exoworlds are actually like, not an easy task.

CHEOPS stands for CHaracterising ExOPlanets Satellite. The telescope will reside in a sun-synchronous orbit around Earth at an altitude of more than 400 miles (700 km). Kate Isaak, CHEOPS project scientist, said in a statement:

We are very excited to see the satellite blast off into space. There are so many interesting exoplanets and we will be following up on several hundreds of them, focusing in particular on the smaller planets in the size range between Earth and Neptune. They seem to be the commonly found planets in our Milky Way galaxy, yet we do not know much about them. CHEOPS will help us reveal the mysteries of these fascinating worlds, and take us one step closer to answering one of the most profound questions we humans ponder: are we alone in the universe?

Watch the launch below:

??

Heike Rauer, Director of the DLR Institute of Planetary Research in Berlin, said:

More than 4000 exoplanets have been discovered in the Milky Way, yet we still know far too little about these distant worlds in our cosmic neighborhood. We are all eager to see which ‘faces’ the planets characterized by CHEOPS will show us.

So how does CHEOPS observe these planets?

Like some other telescopes, it will watch as the planets transit in front of their stars, as seen from Earth. As Juan Cabrera Perez, Head of the Extrasolar Planets and Atmospheres Department at the DLR Institute of Planetary Research, explained:

We could describe this fluctuation in brightness as a ‘mini stellar eclipse’, as the transiting exoplanet reduces the intensity of the light from the star for a short time. This fluctuation can be measured and analyzed – an area in which we can contribute suitable tools and many years of experience.

EarthSky 2020 lunar calendars are available! They make great gifts. Order now. Going fast!

Cool photo of CHEOPS launch, December 18, 2019. Image via ESA/ S. Corvaja.

CHEOPS will focus on some of the most common exoplanets discovered so far, ranging in size from Earth to Neptune, or about approximately 6,000 to 30,000 miles (10,000 to 50,000 km) in diameter. Using data from the transits, CHEOPS can determine the size, mass and density of the planets. All of these are important in order for scientists to figure out the planets’ compositions. Some will be rocky like Earth, while others will have deep, gaseous atmospheres like Neptune or even Jupiter or Saturn. Knowing this will also help scientists determine which of these worlds might be potentially habitable. Of course, rocky planets similar in size to Earth, or a bit larger – super-Earths – would be the most interesting in this regard. Nicola Rando, CHEOPS project manager, said:

Both CHEOPS instrument and spacecraft are built to be extremely stable, so as to measure the incredibly small variations in the light of distant stars as their planets transit in front of them. For a planet like Earth, this amounts to the equivalent of watching the sun from a distant star and measuring its light dim by a tiny fraction of a percent. Now we are looking forward to the first part of the operational activities, making sure that the satellite and instrument perform as expected, ready for scientists to perform their world-class science.

??

CHEOPS will also be able to find out which of these planets do have atmospheres and whether they have clouds. This will help differentiate between deep, gaseous primordial atmospheres with no real solid surface beneath them, and thinner atmospheres like those on terrestrial planets such as Earth, Venus or Mars.

CHEOPS is just the first of three planned ESA missions to study exoplanets.

The Planetary Transits and Oscillations of stars (PLATO) space telescope, expected to launch in 2026, will focus on searching for “Earth-like” planets, ones that are rocky and about the same size as Earth orbiting in their stars’ habitable zones. So far, most such worlds have been found orbiting red dwarf stars, the most common type of star in our galaxy. CHEOPS, however, will look for these planets around sun-like stars. It will also be able to determine the age of these planetary systems with more accuracy than possible before.

A couple of years later, in 2028, ESA will launch the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) mission, which will study the atmospheres of exoplanets. As well as atmospheric composition, this will help scientists develop a comprehensive catalog of exoplanetary orbits, radii, masses, densities and ages.

All three of these exciting missions, and others, will greatly increase our knowledge of these exotic, far-off worlds.

View larger. | Timeline of ESA and NASA exoplanet missions, including CHEOPS. Image via ESA.

As Günther Hasinger, ESA Director of Science, said:

CHEOPS will take exoplanet science to a whole new level. After the discovery of thousands of planets, the quest can now turn to characterization, investigating the physical and chemical properties of many exoplanets and really getting to know what they are made of and how they formed. CHEOPS will also pave the way for our future exoplanet missions, from the international James Webb Telescope to ESA’s very own PLATO and ARIEL satellites, keeping European science at the forefront of exoplanet research.

The CHEOPS mission is a partnership between ESA and Switzerland with additional contributions from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden and the U.K. More than 100 scientists and engineers are involved. The nominal mission is expected to last 3 1/2 years. While the CHEOPS science team has the bulk of observation time, 20% of the time is reserved for other scientists from around the world.

CHEOPS and the coming follow-up missions will open an exciting new chapter in exoplanetary study. What fascinating discoveries will they make?

Bottom line: ESA has successfully launched its CHEOPS space telescope to study hundreds of exoplanets in more detail than ever before.

Via ESA

Via German Aerospace Center (DLR)

Read more: Visit CHEOPS website

Please enable JavaScript to view the comments powered by Disqus.

Let’s block ads! (Why?)



Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending

Exit mobile version