Every challenge astronauts will face on a flight to Mars - Phys.org | Canada News Media
Connect with us

Science

Every challenge astronauts will face on a flight to Mars – Phys.org

Published

 on


Artist’s impression of the Mars Base Camp in orbit around Mars. When missions to Mars begin, one of the greatest risks will be that posed by space radiation. Credit: Lockheed Martin

In 1972, the space race officially ended as NASA sent one last crew of astronauts to the surface of the moon (Apollo 17). This was the brass ring that both the US and the Soviets were reaching for, the “moonshot” that would determine who had supremacy in space. In the current age of renewed space exploration, the next great leap will clearly involve sending astronauts to Mars.

This will present many challenges that will need to be addressed in advance, many of which have to do with simply getting the astronauts there in one piece! These challenges were the subject of a presentation made by two Indian researchers at the SciTech Forum 2020, an annual event hosted by the International Academy of Astronautics (IAA), RUDN University, and the American Astronomical Society (AAS).

The study that describes their research findings recently appeared online and has been accepted for publication by Advances in Aeronautical Sciences (publication date pending). Both it and the presentation made at the SciTech Forum 2020 were conducted by Malaya Kumar Biswal and Ramesh Naidu Annavarapua—a graduate researcher and Associate Professor of Physics from Pondicherry University, India (respectively).

Their research was also the subject of a presentation made during the seventh session of the Space Biology Virtual Workshop hosted by the Lunar Planetary Institute (LPI) – which took place between Jan. 20th and 21st. As Biswal and Annavarapua indicated in their study and presentations, Mars occupies a special place in the hearts and minds of scientists and astrobiological researchers.

Next to Earth, Mars is the most habitable location in the solar system (by terrestrial standards). Multiple lines of evidence accumulated over the course of decades have also shown that it may have supported life at one time. Unfortunately, sending astronauts to Mars will inevitably entail a number of distinct challenges, which arise from logistics and technology to and the distances involved.

Addressing these issues in advance is paramount if NASA and other space agencies hope to conduct the first crewed missions to Mars in the next decade and after. Based on their analysis, Biswal and Annavarapu identified 14 distinct challenges, which include (but are not limited to):

  • The flight trajectory for Mars and corrective maneuvers
  • Spacecraft and fuel management
  • Radiation, microgravity, and astronaut health
  • Isolation and psychological issues
  • Communications (in transit and on Mars)
  • The Mars approach and orbital insertion

All of these challenges experience some degree of overlap with one or more of the others listed. For instance, an obvious issue when it comes to planning missions to Mars is the sheer distance involved. Because of this, launch windows between Earth and Mars only occur every two years when our planets are at the closest in their orbits to each other (i.e., when Mars is in “opposition” relative to the sun).

During these windows, a spacecraft can make the journey from Earth to Mars in 150 to 300 days (about five to ten months). This makes resupply missions impractical since astronauts cannot wait that long to receive much-needed shipments of fuel, food, and other supplied. As Biswal told Universe Today via email, the distances involved also creates problems where astronaut safety and are power-generation are concerned:

“In case of any emergency situation, we cannot bring back astronauts from Mars [as we could] in the case of LEO or Lunar Missions… Similarly, distance reduces the solar flux from Earth orbit to Mars orbit resulting in the deficit power production which is very significant to power vehicle and maintain thermal stability (As again the far distance may lead to low environment temperature causing hypothermia and frost formation (especially in mouth).”

In other words, simply getting to Mars presents multiple specific challenges that Biswal and Annavarapu included in their analysis. When talking about astronaut healthy and safety, there are several specific challenges that come into play here as well. For instance, the fact that astronauts will be spending an several months in deep-space creates all kinds of risks for their physical and .

For starters, there’s the psychological toll of being confined to a spacecraft cabin with other astronauts. There’s also the physical toll of long-term exposure to a microgravity environment. As research aboard the International Space Station (ISS) has shown—particularly, NASA’s Twin Study—spending up to a year in space takes a considerable toll on the human body.

[embedded content]

Credit: Universe Today

Beyond muscle and bone density loss, astronauts who’s spent long periods aboard the ISS also experienced a loss in eyesight, genetic changes, and long-term issues with their cardiovascular and circulation systems. There have also been instances of psychological effects, where astronauts experienced high levels of anxiety, insomnia, and depression.

But as Biswal indicated, the single-greatest and most obvious challenge is all the radiation (solar and cosmic) that the astronauts will be exposed to over the course of the entire :

“[The] greatest dangers include the risk of prolonged cancer and its effects due to exposure to both interplanetary radiation (during Mars transit) and surface radiation (during extended surface stay). Then, the effect of radiation cause improper brain coordination function and other brain-related diseases; then the psychological effect of the crew during complete isolation. Since the crewed mission relies on the performance of astronaut, the astronaut experience more health-related issues.”

In developed nations, people on Earth are exposed to an average of about 620 millirem (62 mSv) annually, or 1.7 millirems (0.17 mSv) a day. Meanwhile, NASA has conducted studies that have shown how a mission to Mars would result in a total exposure of about 1,000 mSv over a two and a half year period. This would consist of 600 mSv during a year-long round-trip, plus 400 mSv during an 18-month stay (while the planets realigned).

What that means is that astronauts will be exposed to 1.64 mSv a day while in transit and 0.73 mSv for every day that they are staying on Mars—that’s over 9.5 and 4.3 times the daily average, respectively. The health risks that this entails could mean that astronauts would be suffering from radiation-related health problems before they even arrive on Mars, to say nothing of the surface operations or return trip.

Luckily, there are mitigation strategies for the transit and surface parts of the mission, some of which Biswal and Annavarapua recommend. “We are currently developing a Mars subsurface habitat that could address all the health-related issues on the extended mission or permanent settlement on Mars,” said Biswal. “[T]he crewed mission should include faster production of crew necessities from in-situ resource [utilization] (ISRU).”

An illustration of a moon base that could be built using 3-D printing and ISRU, in-situ resource utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018

This proposal is in keeping with the many mission profiles that NASA and other space agencies are developing for future lunar and Martian exploration. There are already many existing strategies to keep crews protected from radiation while in space, but in extraterrestrial environments, all concepts incorporate the use of local resources (such as regolith or ice) to create natural shielding.

The local availability of ice is also seen as a must for the sake of ensuring a steady water supply for human consumption and irrigation (since astronauts on long-duration missions will need to grow much of their own food). Aside from all that, Biswal and Annavarapu emphasized how maintaining a fast flight and return trajectory will help reduce travel time.

There is also the possibility of leveraging advanced technologies like nuclear-thermal and nuclear-electric propulsion (NTP/NEP). NASA and other space agencies are actively researching nuclear rockets since a spacecraft equipped with NTP or NEP could make the journey to Mars in just 100 days. But as Bisawl and Annavarapu indicated, this raises the challenge of dealing with nuclear systems and more exposure to radiation.

Alas, all of these challenges can be addressed with the right combination of innovation and preparation. And when you consider the payoffs of sending crewed missions to Mars, the challenges seem a lot less daunting. As Biswal offered, these include proximity, the opportunities to study Martian soil samples in an Earth laboratory, the expanding of our horizons, and the ability to answer fundamental questions about life:

“We have always been fascinated to know where we have come from and if there is any life like us in other astronomical bodies? [W]e cannot execute a crewed mission to any other interplanetary destination due to mission risk and management.

“Mars is the only neighboring planet in our solar system we can explore, it [has] a good geologic record to answer all [of] our unsolved questions, and [we can] bring samples [back] to analyze in our terrestrial lab?” And finally, it would be interesting to execute a human mission to Mars in order to demonstrate the extent of current technology and aerospace progression.”

Artist’s concept of a bimodal nuclear rocket making the journey to the moon, Mars, and other destinations in the solar system. Credit: NASA

Since the early 1960s, space agencies have been sending robotic missions to Mars. Since the 1970s, some of those missions have been landers that set down on the surface. With the over forty years of data and expertise that’s resulted, NASA and other space agencies are now looking to apply what they’ve learned so they can send the first to Mars.

The first attempts may still be over a decade (or more) away, but only if significant preparations take place beforehand. Not only do a lot of mission-related components and infrastructure still need to be developed, but a lot of research still needs to be done. Thankfully, these efforts benefit from the kinds of thorough assessments we see here, where all potential risks and hazards are investigated (and counter-measures proposed).

All of this will hopefully lead to the creation of a sustainable program for Martian exploration. It might even enable the long-term human occupation of Mars and the creation of a permanent colony. Thanks to the efforts of many researchers and scientists, the day may finally come when there is such a thing as “Martians.”


Explore further

Books outline what it takes to put astronauts in space


More information:
Interplanetary Challenges Encountered by the Crew During their Interplanetary Transit from Earth to Mars. arxiv.org/abs/2101.04723

Citation:
Every challenge astronauts will face on a flight to Mars (2021, February 5)
retrieved 5 February 2021
from https://phys.org/news/2021-02-astronauts-flight-mars.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Let’s block ads! (Why?)



Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

B.C. sets up a panel on bear deaths, will review conservation officer training

Published

 on

 

VICTORIA – The British Columbia government is partnering with a bear welfare group to reduce the number of bears being euthanized in the province.

Nicholas Scapillati, executive director of Grizzly Bear Foundation, said Monday that it comes after months-long discussions with the province on how to protect bears, with the goal to give the animals a “better and second chance at life in the wild.”

Scapillati said what’s exciting about the project is that the government is open to working with outside experts and the public.

“So, they’ll be working through Indigenous knowledge and scientific understanding, bringing in the latest techniques and training expertise from leading experts,” he said in an interview.

B.C. government data show conservation officers destroyed 603 black bears and 23 grizzly bears in 2023, while 154 black bears were killed by officers in the first six months of this year.

Scapillati said the group will publish a report with recommendations by next spring, while an independent oversight committee will be set up to review all bear encounters with conservation officers to provide advice to the government.

Environment Minister George Heyman said in a statement that they are looking for new ways to ensure conservation officers “have the trust of the communities they serve,” and the panel will make recommendations to enhance officer training and improve policies.

Lesley Fox, with the wildlife protection group The Fur-Bearers, said they’ve been calling for such a committee for decades.

“This move demonstrates the government is listening,” said Fox. “I suspect, because of the impending election, their listening skills are potentially a little sharper than they normally are.”

Fox said the partnership came from “a place of long frustration” as provincial conservation officers kill more than 500 black bears every year on average, and the public is “no longer tolerating this kind of approach.”

“I think that the conservation officer service and the B.C. government are aware they need to change, and certainly the public has been asking for it,” said Fox.

Fox said there’s a lot of optimism about the new partnership, but, as with any government, there will likely be a lot of red tape to get through.

“I think speed is going to be important, whether or not the committee has the ability to make change and make change relatively quickly without having to study an issue to death, ” said Fox.

This report by The Canadian Press was first published Sept. 9, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

Science

Asteroid Apophis will visit Earth in 2029, and this European satellite will be along for the ride

Published

 on

The European Space Agency is fast-tracking a new mission called Ramses, which will fly to near-Earth asteroid 99942 Apophis and join the space rock in 2029 when it comes very close to our planet — closer even than the region where geosynchronous satellites sit.

Ramses is short for Rapid Apophis Mission for Space Safety and, as its name suggests, is the next phase in humanity’s efforts to learn more about near-Earth asteroids (NEOs) and how we might deflect them should one ever be discovered on a collision course with planet Earth.

In order to launch in time to rendezvous with Apophis in February 2029, scientists at the European Space Agency have been given permission to start planning Ramses even before the multinational space agency officially adopts the mission. The sanctioning and appropriation of funding for the Ramses mission will hopefully take place at ESA’s Ministerial Council meeting (involving representatives from each of ESA’s member states) in November of 2025. To arrive at Apophis in February 2029, launch would have to take place in April 2028, the agency says.

This is a big deal because large asteroids don’t come this close to Earth very often. It is thus scientifically precious that, on April 13, 2029, Apophis will pass within 19,794 miles (31,860 kilometers) of Earth. For comparison, geosynchronous orbit is 22,236 miles (35,786 km) above Earth’s surface. Such close fly-bys by asteroids hundreds of meters across (Apophis is about 1,230 feet, or 375 meters, across) only occur on average once every 5,000 to 10,000 years. Miss this one, and we’ve got a long time to wait for the next.

When Apophis was discovered in 2004, it was for a short time the most dangerous asteroid known, being classified as having the potential to impact with Earth possibly in 2029, 2036, or 2068. Should an asteroid of its size strike Earth, it could gouge out a crater several kilometers across and devastate a country with shock waves, flash heating and earth tremors. If it crashed down in the ocean, it could send a towering tsunami to devastate coastlines in multiple countries.

Over time, as our knowledge of Apophis’ orbit became more refined, however, the risk of impact  greatly went down. Radar observations of the asteroid in March of 2021 reduced the uncertainty in Apophis’ orbit from hundreds of kilometers to just a few kilometers, finally removing any lingering worries about an impact — at least for the next 100 years. (Beyond 100 years, asteroid orbits can become too unpredictable to plot with any accuracy, but there’s currently no suggestion that an impact will occur after 100 years.) So, Earth is expected to be perfectly safe in 2029 when Apophis comes through. Still, scientists want to see how Apophis responds by coming so close to Earth and entering our planet’s gravitational field.

“There is still so much we have yet to learn about asteroids but, until now, we have had to travel deep into the solar system to study them and perform experiments ourselves to interact with their surface,” said Patrick Michel, who is the Director of Research at CNRS at Observatoire de la Côte d’Azur in Nice, France, in a statement. “Nature is bringing one to us and conducting the experiment itself. All we need to do is watch as Apophis is stretched and squeezed by strong tidal forces that may trigger landslides and other disturbances and reveal new material from beneath the surface.”

The Goldstone radar’s imagery of asteroid 99942 Apophis as it made its closest approach to Earth, in March 2021. (Image credit: NASA/JPL–Caltech/NSF/AUI/GBO)

By arriving at Apophis before the asteroid’s close encounter with Earth, and sticking with it throughout the flyby and beyond, Ramses will be in prime position to conduct before-and-after surveys to see how Apophis reacts to Earth. By looking for disturbances Earth’s gravitational tidal forces trigger on the asteroid’s surface, Ramses will be able to learn about Apophis’ internal structure, density, porosity and composition, all of which are characteristics that we would need to first understand before considering how best to deflect a similar asteroid were one ever found to be on a collision course with our world.

Besides assisting in protecting Earth, learning about Apophis will give scientists further insights into how similar asteroids formed in the early solar system, and, in the process, how  planets (including Earth) formed out of the same material.

One way we already know Earth will affect Apophis is by changing its orbit. Currently, Apophis is categorized as an Aten-type asteroid, which is what we call the class of near-Earth objects that have a shorter orbit around the sun than Earth does. Apophis currently gets as far as 0.92 astronomical units (137.6 million km, or 85.5 million miles) from the sun. However, our planet will give Apophis a gravitational nudge that will enlarge its orbit to 1.1 astronomical units (164.6 million km, or 102 million miles), such that its orbital period becomes longer than Earth’s.

It will then be classed as an Apollo-type asteroid.

Ramses won’t be alone in tracking Apophis. NASA has repurposed their OSIRIS-REx mission, which returned a sample from another near-Earth asteroid, 101955 Bennu, in 2023. However, the spacecraft, renamed OSIRIS-APEX (Apophis Explorer), won’t arrive at the asteroid until April 23, 2029, ten days after the close encounter with Earth. OSIRIS-APEX will initially perform a flyby of Apophis at a distance of about 2,500 miles (4,000 km) from the object, then return in June that year to settle into orbit around Apophis for an 18-month mission.

Related Stories:

Furthermore, the European Space Agency still plans on launching its Hera spacecraft in October 2024 to follow-up on the DART mission to the double asteroid Didymos and Dimorphos. DART impacted the latter in a test of kinetic impactor capabilities for potentially changing a hazardous asteroid’s orbit around our planet. Hera will survey the binary asteroid system and observe the crater made by DART’s sacrifice to gain a better understanding of Dimorphos’ structure and composition post-impact, so that we can place the results in context.

The more near-Earth asteroids like Dimorphos and Apophis that we study, the greater that context becomes. Perhaps, one day, the understanding that we have gained from these missions will indeed save our planet.

 

Source link

Continue Reading

Trending

Exit mobile version