Exploring 'chemical space' with Professor Anatole von Lilienfeld | Canada News Media
Connect with us

Tech

Exploring ‘chemical space’ with Professor Anatole von Lilienfeld

Published

 on

Professor Anatole von Lilienfeld (Chemistry, MSE) navigates space — but rather than exploring the depths of the universe, his work is here on Earth in “chemical space.”

And instead of hunting for unknown stars, galaxies and other celestial objects, his focus is on the untapped potential of undiscovered chemical combinations. To do this work, he is not equipped with a powerful telescope — his tool of choice is artificial intelligence (AI).

Von Lilienfeld is the inaugural Clark Chair in Advanced Materials at the Vector Institute and the University of Toronto, and a pivotal member of U of T’s Acceleration Consortium (AC). Appointed jointly to the Department of Chemistry in the Faculty of Arts & Science and the Department of Materials Science & Engineering at U of T Engineering, he is a leading expert on the use of computers to understand the vastness of chemical space.

Von Lilienfeld, who was recently named a Canada CIFAR AI Chair, was a speaker at the AC’s first annual Accelerate conference last month at U of T.

This four-day program centred around the power of self-driving labs (SDLs), an emerging technology that combines AI, automation, and advanced computing to accelerate materials and molecular discovery. The Accelerate conference brought together over 200 people and featured talks and panels with more than 60 experts from academia, industry, and government who are shaping the emerging field of accelerated science.

Erin Warner, communications specialist at the Acceleration Consortium, recently spoke with von Lilienfeld about the conference and the digitization of chemistry.

How big is ‘chemical’ space?

We are surrounded by materials and molecules. Consider the chemical compounds that make up our clothing, the pavement we walk on, and the batteries in our electric cars. Now think about the new possible combinations that are out there waiting to be discovered, such as catalysts for effective atmospheric CO2 capture and utilization, low-carbon cement, lightweight biodegradable composites, membranes for water filtration, and potent molecules for treatment of cancer and bacterial-resistant disease.

In a practical sense, chemical space is infinite and searching it is no small feat. A lower estimate says it contains 1060 compounds — more than the number of atoms in our solar system.

Why do we need to accelerate the search for new materials?

Many of the most widely used materials no longer serve us. Most of the world’s plastic waste generated to date has not yet been recycled. But the materials that will power the future will hopefully be sustainable, circular and inexpensive.

Conventional chemistry is slow, a series of often tedious trial and error that limits our ability to explore beyond a small subset of possibilities. However, AI can accelerate the process by predicting which combinations might result in a material with the set of desired characteristics we are looking for (e.g., conductive, biodegradable, etc.).

This is but one step in self-driving laboratories, an emerging technology that combines AI, automation, and advanced computing to reduce the time and cost of discovering and developing materials by up to 90%.

How can human chemists and AI work together effectively?

AI is a tool that humans can use to accelerate and improve their own research. It can be thought of as the fourth pillar of science. The pillars, which build on each other, include experimentation, theory, computer simulation and AI.

Experimentation is the foundation. We experiment with the aim of improving the physical world for humans. Then comes theory to give your experiments shape and direction. But theory has its limitations. Without computer simulation, the amount of computation needed to support scientific research would take far longer than a lifetime. But even computers have constraints.

With difficult equations come the need for high-performance computing, which can be quite costly. This is where AI comes in. AI is a less costly alternative. It can help scientists predict both an experimental and computational outcome. And the more theory we build into the AI model, the better the prediction. AI can also be used to power a robotic lab, allowing the lab the ability to run 24/7. Human chemists will not be replaced; instead, they can hand off tedious hours of trial and error to focus more on designing the objectives and other higher-level analysis.

Professor Anatole von Lilienfeld at the Accelerate Conference at the University of Toronto. (Photo: Clifton Li, Acceleration Consortium)

Are there any limitations to AI, like the ones you described in the other pillars of science?

Yes, it is important to note that AI is not a silver bullet, and that there is a cost associated with it that can be measured in data acquisition. You cannot use AI without data. And data acquisition requires experimenting and recording the outcome in a way that can be processed by computers. Like a human, the AI then learns by reviewing the data and making an extrapolation or prediction.

Data acquisition is costly, both financially and in terms of its carbon footprint. To address this, the goal is to improve the AI. If you can encode our understanding of physics into the AI, it becomes more efficient and requires less data to learn but provides the same predictive qualities. If less data is needed for training, then the AI model becomes smaller.

Rather than just using AI as a tool, the chemist can also interrogate it to see how well its data captures theory, perhaps leading to the discovery of a new relative law for chemistry. While this interactive relationship is not as common, it may be on the horizon and could improve our theoretical understanding of the world.

How can we make AI for discovery more accessible?

The first way is open-source research. In the emerging field of accelerated science, there are many proponents of open-source access. Not only are journals providing access to research papers, but also in many cases to the data, which is a major component for making the field more accessible. There are also repositories for models and code like GitHub. Providing access could lead to scientific advancements that ultimately benefit all of humanity.

A second way to expand AI for discovery is to include more students. We need to teach basic computer science and coding skills as part of a chemistry or materials science education. Schools around the world are beginning to update their curricula to this effect, but we still need to see more incorporate this essential training. The future of the sciences is digital.

How do initiatives like Acceleration Consortium, and a conference like Accelerate, help advance the field?

We are at the dawn of truly digitizing the chemical sciences. Coordinated, joint efforts, such as the Acceleration Consortium, will play a crucial role in synchronizing efforts not only at the technical but also at the societal level, thereby enabling the worldwide implementation of an ‘updated’ version of chemical engineering with unprecedented advantages for humanity at large.

The consortium also serves to connect academia and industry, two worlds that could benefit from a closer relationship. Visionaries in the commercial sector can dream up opportunities, and the consortium will be there to help make the science work. The groundbreaking nature of AI is that it can be applied to any sector. AI is on a trajectory to have an even greater impact than the advent of computers.

Accelerate, the consortium’s first annual conference, was a great rallying event for the community and was a reminder that remarkable things can come from a gathering of bright minds. While Zoom has done a lot for us during the pandemic, it cannot easily replicate the excitement and enthusiasm often cultivated at an in-person conference and which are needed to direct research and encourage a group to pursue a complex goal.

What area of ‘chemical space’ fascinates you the most?

Catalysts, which enable a certain chemical reaction to occur but remain unchanged in the process. A century ago, Haber and Bosch developed a catalytic process that would allow the transformation of nitrogen — the dominant substance in the air we breathe — into ammonia. Ammonia is a crucial starting material for chemical industries, but also for fertilizers. It made the mass production of fertilizers possible and saved millions of people from starvation. Major fractions of humanity would not exist right now if it were not for this catalyst.

From a physics point of view, what defines and controls catalyst activity and components are fascinating questions. They might also be critical for helping us address some of our most pressing challenges. If we were to find a catalyst that could use sunlight to turn nitrogen rapidly and efficiently into ammonia, we might be able to solve our energy problem by using ammonia for fuel. You can think of the reactions that catalysts enable as ways of traveling through chemical space and to connect different states of matter.

Source link

Continue Reading

Tech

United Airlines will offer free internet on flights using service from Elon Musk’s SpaceX

Published

 on

 

CHICAGO (AP) — United Airlines has struck a deal with Elon Musk’s SpaceX to offer satellite-based Starlink WiFi service on flights within the next several years.

The airline said Friday the service will be free to passengers.

United said it will begin testing the service early next year and begin offering it on some flights by later in 2025.

Financial details of the deal were not disclosed.

The announcement comes as airlines rush to offer more amenities as a way to stand out when passengers pick a carrier for a trip. United’s goal is to make sitting on a plane pretty much like being on the ground when it comes to browsing the internet, streaming entertainment and playing games.

“Everything you can do on the ground, you’ll soon be able to do on board a United plane at 35,000 feet, just about anywhere in the world,” CEO Scott Kirby said in announcing the deal.

The airline says Starlink will allow passengers to get internet access even over oceans and polar regions where traditional cell or Wi-Fi signals may be weak or missing.

The Canadian Press. All rights reserved.

Source link

Continue Reading

Tech

How to Preorder the PlayStation 5 Pro in Canada

Published

 on

Sony has made it easy for Canadian consumers to preorder the PlayStation 5 Pro in Canada directly from PlayStation’s official website. Here’s how:

  • Visit the Official Website: Go to direct.playstation.com and navigate to the PS5 Pro section once preorders go live on September 26, 2024.
  • Create or Log in to Your PlayStation Account: If you don’t have a PlayStation account, you will need to create one. Existing users can simply log in to proceed.
  • Place Your Preorder: Once logged in, follow the instructions to preorder your PS5 Pro. Ensure you have a valid payment method ready and double-check your shipping information for accuracy.

Preorder Through Major Canadian Retailers

While preordering directly from PlayStation is a popular option, you can also secure your PS5 Pro through trusted Canadian retailers. These retailers are expected to offer preorders on or after September 26:

  • Best Buy Canada
  • Walmart Canada
  • EB Games (GameStop)
  • Amazon Canada
  • The Source

Steps to Preorder via Canadian Retailers:

  • Visit Retailer Websites: Search for “PlayStation 5 Pro” on the website of your preferred retailer starting on September 26.
  • Create or Log in to Your Account: If you’re shopping online, having an account with the retailer can speed up the preorder process.
  • Preorder in Store: For those who prefer in-person shopping, check with local stores regarding availability and preorder policies.

3. Sign Up for Notifications

Many retailers and websites offer the option to sign up for notifications when the preorder goes live. If you’re worried about missing out due to high demand, this can be a useful option.

  • Visit Retailer Sites: Look for a “Notify Me” or “Email Alerts” option and enter your email to stay informed.
  • Use PlayStation Alerts: Sign up for notifications directly through Sony to be one of the first to know when preorders are available.

4. Prepare for High Demand

Preordering the PS5 Pro is expected to be competitive, with high demand likely to result in quick sellouts, just as with the initial release of the original PS5. To maximize your chances of securing a preorder:

  • Act Quickly: Be prepared to place your order as soon as preorders open. Timing is key, as stock can run out within minutes.
  • Double-Check Payment Information: Ensure your credit card or payment method is ready to go. Any delays during the checkout process could result in losing your spot.
  • Stay Informed: Monitor PlayStation and retailer websites for updates on restocks or additional preorder windows.

Final Thoughts

The PlayStation 5 Pro is set to take gaming to the next level with its enhanced performance, graphics, and new features. Canadian gamers should be ready to act fast when preorders open on September 26, 2024, to secure their console ahead of the holiday season. Whether you choose to preorder through PlayStation’s official website or your preferred retailer, following the steps outlined above will help ensure a smooth and successful preorder experience.

For more details on the PS5 Pro and to preorder, visit direct.playstation.com or stay tuned to updates from major Canadian retailers.

Continue Reading

Tech

Introducing the PlayStation 5 Pro: The Next Evolution in Gaming

Published

 on

Since the PlayStation 5 (PS5) launched four years ago, PlayStation has continuously evolved to meet the demands of its players. Today, we are excited to announce the next step in this journey: the PlayStation 5 Pro. Designed for the most dedicated players and game creators, the PS5 Pro brings groundbreaking advancements in gaming hardware, raising the bar for what’s possible.

Key Features of the PS5 Pro

The PS5 Pro comes equipped with several key performance enhancements, addressing the requests of gamers for smoother, higher-quality graphics at a consistent 60 frames per second (FPS). The console’s standout features include:

  • Upgraded GPU: The PS5 Pro’s GPU boasts 67% more Compute Units than the current PS5, combined with 28% faster memory. This allows for up to 45% faster rendering speeds, ensuring a smoother gaming experience.
  • Advanced Ray Tracing: Ray tracing capabilities have been significantly enhanced, with reflections and refractions of light being processed at double or triple the speed of the current PS5, creating more dynamic visuals.
  • AI-Driven Upscaling: Introducing PlayStation Spectral Super Resolution, an AI-based upscaling technology that adds extraordinary detail to images, resulting in sharper image clarity.
  • Backward Compatibility & Game Boost: More than 8,500 PS4 games playable on PS5 Pro will benefit from PS5 Pro Game Boost, stabilizing or enhancing performance. PS4 games will also see improved resolution on select titles.
  • VRR & 8K Support: The PS5 Pro supports Variable Refresh Rate (VRR) and 8K gaming for the ultimate visual experience, while also launching with the latest wireless technology, Wi-Fi 7, in supported regions.

Optimized Games & Patches

Game creators have quickly embraced the new technology that comes with the PS5 Pro. Many games will receive free updates to take full advantage of the console’s new features, labeled as PS5 Pro Enhanced. Some of the highly anticipated titles include:

  • Alan Wake 2
  • Assassin’s Creed: Shadows
  • Demon’s Souls
  • Dragon’s Dogma 2
  • Final Fantasy 7 Rebirth
  • Gran Turismo 7
  • Marvel’s Spider-Man 2
  • Ratchet & Clank: Rift Apart
  • Horizon Forbidden West

These updates will allow players to experience their favorite games at a higher fidelity, taking full advantage of the console’s improved graphics and performance.

 

 

Design & Compatibility

Maintaining consistency within the PS5 family, the PS5 Pro retains the same height and width as the original PS5 model. Players will also have the option to add an Ultra HD Blu-ray Disc Drive or swap console covers when available.

Additionally, the PS5 Pro is fully compatible with all existing PS5 accessories, including the PlayStation VR2, DualSense Edge, Pulse Elite, and Access controller. This ensures seamless integration into your current gaming setup.

Pricing & Availability

The PS5 Pro will be available starting November 7, 2024, at a manufacturer’s suggested retail price (MSRP) of:

  • $699.99 USD
  • $949.99 CAD
  • £699.99 GBP
  • €799.99 EUR
  • ¥119,980 JPY

Each PS5 Pro comes with a 2TB SSD, a DualSense wireless controller, and a copy of Astro’s Playroom pre-installed. Pre-orders begin on September 26, 2024, and the console will be available at participating retailers and directly from PlayStation via direct.playstation.com.

The launch of the PS5 Pro marks a new chapter in PlayStation’s commitment to delivering cutting-edge gaming experiences. Whether players choose the standard PS5 or the PS5 Pro, PlayStation aims to provide the best possible gaming experience for everyone.

Preorder your PS5 Pro and step into the next generation of gaming this holiday season.

Continue Reading

Trending

Exit mobile version