Connect with us

Science

Fermenting ferns? Rare dinosaur stomach fossil opens door to ancient world – News Talk 650 CKOM

Published

on


Fresh ferns, loaded with spores, lightly dusted with leaves and twigs and perfectly seasoned with locally sourced charcoal.

Sound good? It did to an ankylosaur about 110 million years ago, as evidenced by amazingly complete fossils of what was certainly the tank-like dinosaur’s last meal.

“It’s pretty exciting,” said Caleb Brown, a curator at the Royal Tyrrell Museum of Paleontology and co-author of a paper published Tuesday on what is one of probably only three fossilized dinosaur stomachs discovered.

“We can start recontructing the life histories and ecologies of these animals.”

The dining dinosaur was first unearthed in 2011 in a northern Alberta Suncor oilsands mine, where many excavators have learned to look for fossils as they dig. When this one turned up, a crew from the Tyrrell followed shortly afterward.

It was an amazingly well-preserved ankylosaur from the early Cretaceous period. Low but large — the species could reach eight metres long and weigh eight tonnes — the fossil took two weeks to remove.

It then took 5 1/2 years for technician Mark Mitchell to clean and prepare it, which is why the species now bears the Latin name markmitchelli. The restored specimen, complete with body armour and outer skin, was remarkable enough for a 2017 National Geographic magazine feature.  

But for paleontologists, the fun was just starting. They began looking at a fossilized structure that co-author Jim Basinger of the University of Saskatchewan described as looking like a “squashed basketball.”

It was in the right place for a stomach and it held gastroliths, small stones dinosaurs used to help digest their food, much as some birds do today.

“There’s a great mess of them and they’re quite distinctive,” said Basinger.

The scientists eventually compiled 16 pieces of evidence that the squashed basketball was, in fact, a stomach.  

“It’s unquestionable,” Basinger said.

There are only two other fossilized stomachs in the world that scientists are this sure about. Neither opens doors to the past the way this one does.

About 80 per cent of this last meal was a particular species of ferns. The fossils are so well preserved their spores identify them.

There are bits of other plants and twigs so immaculate that their growth rings are being used to estimate weather at the time. And there is charcoal from burned woody material.

Brown points out ferns aren’t that nutritious. A beast this size would need digestion capable of getting the most from them.

That means this dinosaur may have fermented its food, much like many animals today.

“All big herbivores today use some form of fermentation,” Brown said. “For this animal, it was almost certainly fermenting those ferns.”

Which raises other interesting questions: How much fermented fern does it take to move an eight-tonne lizard? How much energy might it need? Where might that much fodder be found?

The charcoal provides a clue. It probably came from an ancient forest fire where ferns would have been abundant in the first flush of new growth, much as they are today.

“(The dinosaur) was taking advantage of a charred landscape,” Basinger said. Many modern animals do the same, chowing down on tender, nutritious and low-hanging new growth that follows the flames.

More than just reassembling skeletons, modern paleontology is starting to rebuild ecosystems that haven’t existed for millions and millions of years.

“That’s something we can start playing with,” Brown said. 

The fossils tell individual stories, too.

Basinger said, given the undigested contents of its stomach, this ankylosaur died quickly. It was surrounded by marine fossils, and researchers believe it slipped or fell into a large river, where it drowned and was swept out to sea.

“Whatever happened to the poor dinosaur, it would have happened pretty fast after it had eaten.”

This report by The Canadian Press was first published June 2, 2020

— Follow at @row1960 on Twitter

Bob Weber, The Canadian Press

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Century-old photos show effects of climate change in Rocky Mountain forests – Vancouver Sun

Published

on


Article content

The towering crags and peaks of the Canadian Rocky Mountains have been getting steadily greener over the past century, according to a new study.

“They are kind of becoming the needly or leafy mountains at this point,” said lead author Andrew Trant, an ecologist at the University of Waterloo.

The researchers stumbled across a collection of 120,000 historic images — mainly high-quality, glass-slide photographs — from early cartographic surveys of the Canadian Rockies, which they were able to compare with modern images of the exact same scenes taken nearly 100 years later.

“In about 90 per cent of the cases the trees are growing higher up the mountain and in greater numbers, so more individual trees,” he said.

Areas that were once covered by stands of low-lying, sideways-growing trees, gnarled and tortured by the elements, are now growing upright, they found.

“Conditions have improved enough that these same individuals have turned from a prostrate, craggly thing into an upright tree,” he said. “What’s likely is that as things are warming they are able to do something they couldn’t do before and they are starting to grow upwards.”

Let’s block ads! (Why?)



Source link

Continue Reading

Science

NASA injects $17M into four small companies with Artemis ambitions – TechCrunch

Published

on


NASA awards millions of dollars a year to small businesses through the SBIR program, but generally it’s a lot of small awards to hundreds of companies. Breaking with precedent, today the agency announced a new multi-million-dollar funding track and its four first recipients, addressing urgent needs for the Artemis program.

The Small Business Innovation Research program has various forms throughout the federal government, but it generally provides non-dilutive funding on the order of a few hundred thousand dollars over a couple of years to nudge a nascent technology toward commercialization.

NASA has found, however, that there is a gap between the medium-size Phase II awards and Phase III, which is more like a full-on government contract; there are already “Extended” and “Pilot” programs that can provide up to an additional $1 million to promising companies. But the fact is space is expensive and time-consuming, and some need larger sums to complete the tech that NASA has already indicated confidence in or a need for.

Therefore the creation of this new tier of Phase II award: less than a full contract would amount to, but up to $5 million — nothing to sneeze at, and it comes with relatively few strings attached.

The first four companies to collect a check from this new, as yet unnamed program are all pursuing technologies that will be of particular use during the Artemis lunar missions:

  • Fibertek: Optical communications for small spacecraft that would help relay large amounts of data from lunar landers to Earth
  • Qualtech Systems: Autonomous monitoring, fault-prevention and health management systems for spacecraft like the proposed Lunar Gateway and possibly other vehicles and habitats
  • Pioneer Astronautics: Hardware to produce oxygen and steel from lunar regolith — if achieved, an incredibly useful form of high-tech alchemy
  • Protoinnovations: Traction control to improve handling of robotic and crewed rovers on lunar terrain

It’s important to note that these companies aren’t new to the game — they have a long and ongoing relationship with NASA, as SBIR grants take place over multiple years. “Each business has a track record of success with NASA, and we believe their technologies will have a direct impact on the Artemis program,” said NASA’s Jim Reuter in a news release.

The total awarded is $17 million, but NASA, citing ongoing negotiations, could not be more specific about the breakdown except that the amounts awarded fall between $2.5 million and $5 million per company.

I asked the agency for a bit more information on the new program and how companies already in the SBIR system can apply to it or otherwise take advantage of the opportunity, and will update this post if I hear back.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Watermelon snow shows up on Italian Alps – The Weather Network

Published

on


Watermelon snow has appeared atop the Presena Glacier in the Italian Alps.

Researcher Biagio Di Mauro, of the Institute of Polar Sciences at Italy’s National Research Council, told CNN his team went to investigate the site over the weekend and encountered an “impressive bloom” — but that’s bad news for the glacier, as it can speed up melting.

Di Mauro says watermelon snow has been unusually common this year.

He plans to study it in greater detail with the help of satellite data.


File photo courtesy: USDA.

WHAT IS WATERMELON SNOW?

While it is a naturally-occurring phenomenon, watermelon snow is becoming increasingly common in the spring and summer because it requires light, higher temperatures, and water to grow.

“Watermelon snow is formed by an algal species (Chlamydomonas nivalis) containing a red pigment in addition to chlorophyll,” U.S. Geological Survey scientist Joe Giersch said in 2018 in an Instagram post of a photo of watermelon snow that he spotted at Glacier National Park.

This pigment protects the algal chloroplast from solar radiation and absorbs heat, providing the alga with liquid water as the snow melts around it. As snow melts throughout the summer, the algae are concentrated in depressions on the snow surface (which further accelerates melting), with small populations persisting in puddles through the fall.”

Watermelon snow is one of nature’s peculiarities. Scientists don’t fully understand it, or the long-term impact it could have on the environment.

Here’s one thing they do know: Watermelon may look neat but it’s not something conservationists want to see.

According to a study in Nature Communications, red algae can reduce a snow’s albedo — i.e., the ability to reflect light — by up to 13 per cent. That means the snow absorbs more of the sun’s energy and melts faster.

Couple that with a stint of above-seasonal temperatures and you’ve got a recipe for accelerated melting.

Oh, and one more thing: If you come across a patch of watermelon snow don’t eat it. You’ll make yourself sick.

Let’s block ads! (Why?)



Source link

Continue Reading

Trending