Connect with us

Science

FONOM to push for Space X internet project

Published

 on


The Federation of Northern Ontario Municipalities (FONOM) is advocating for the implementation of a satellite internet service being rolled out by Elon Musk’s company.

Starlink is in the process of providing satellite internet services to rural and remote areas in Canada and the United States.

Bill Vrebosch, who represents North Bay in FONOM, says that Starlink will be a better option than fibre optic internet which is what he normally advocates for.

“If we could blanket the whole thing with satellite, that takes a lot of stuff out of existence,” he said, adding that the traditional fibre optic internet is already aging technology.

Danny Whalen, President of FONOM, also agrees that Starlink is the best option for northern Ontario.
“We know today our citizens require greater connectivity than 50/10 megabits per second,” said Whalen. “FONOM believes that the Starlink program is our best option.”

Starlink intends to roll out its satellite internet services in North America by 2021. The project involves numerous small satellites, about 270kg each, orbiting in the atmosphere to create a blanket satellite internet service that can be accessed in areas that don’t have high-speed internet. The satellites are solar-powered and are propelled by ion thrusters, which will deorbit at the end of its five-year life span.

Vrebosch says that he intends to bring forward a motion at the next city council meeting to try and gain council’s support of the project, which will be the case for municipalities across northern Ontario.

Part of FONOM’s goal is also to call on the Canadian Radio-television and Telecommunications Commission (CRTC) to permit and expand the company a Basic International Telecommunications Services (BITS) license. This would allow Starlink to compete with the other telecommunications companies in Canada.

Ontario Premier Doug Ford underlined the importance of providing the north with high-speed internet during a northern Ontario town hall earlier in the week, saying that he’s “like a dog with a bone” when it comes to advocating for northern Ontario.

Under current projections, the implementation of fibre-optic high-speed internet in rural and remote areas has the price tag at around $10 to $15 billion.

Vrebosch says that he is working on trying to figure out the cost of implementing Starlink in the north.

“I want the North Bay Economic Development team to get in contact with these people (Starlink) and offer this area as a pilot program for Canada,” he said. “I know it’s a big dream, but sometimes big dreams materialize.”

Source:- My West Nipissing Now

Source link

Continue Reading

Science

Salty ponds found on Mars suggest stronger prospect of life on red planet, scientists say – CBC.ca

Published

 on


A network of salty ponds may be gurgling beneath the South Pole on Mars, alongside a large underground lake, raising the prospect of tiny, swimming Martian life.

Italian scientists reported their findings Monday, two years after identifying what they believed to be a large buried lake. They widened their coverage area by a couple hundred miles, using even more data from a radar sounder on the European Space Agency’s Mars Express orbiter.

In the latest study appearing in the journal Nature Astronomy, the scientists provide further evidence of this salty underground lake, estimated to be 20 to 30 kilometres across and buried 1.5 kilometres beneath the icy surface.

Even more tantalizing, they’ve also identified three smaller bodies of water surrounding the lake. These ponds appear to be of various sizes and are separate from the main lake.

Roughly four billion years ago, Mars was warm and wet, like Earth. But the red planet eventually morphed into the barren, dry world it is today.

The research team led by Roma Tre University’s Sebastian Emanuel Lauro used a method similar to those used on Earth to detect buried lakes in the Antarctic and Canadian Arctic. They based their findings on more than 100 radar observations by Mars Express from 2010 to 2019; the spacecraft was launched in 2003.

All this potential water raises the possibility of microbial life on — or inside — Mars. High concentrations of salt are likely keeping the water from freezing at this frigid location, the scientists noted. The surface temperature at the South Pole is an estimated -113 degrees C and gets gradually warmer with depth.

These bodies of water are potentially interesting biologically and the researchers wrote that “future missions to Mars should target this region.” 

Earlier this year, a new computer model by NASA scientists lent further support to the theory that the ocean beneath the thick, icy crust of Jupiter’s moon Europa could be habitable.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Salty lake, ponds may be gurgling beneath South Pole on Mars – CP24 Toronto's Breaking News

Published

 on


Marcia Dunn, The Associated Press


Published Monday, September 28, 2020 7:46PM EDT

CAPE CANAVERAL, Fla. – A network of salty ponds may be gurgling beneath Mars’ South Pole alongside a large underground lake, raising the prospect of tiny, swimming Martian life.

Italian scientists reported their findings Monday, two years after identifying what they believed to be a large buried lake. They widened their coverage area by a couple hundred miles, using even more data from a radar sounder on the European Space Agency’s Mars Express orbiter.

In the latest study appearing in the journal Nature Astronomy, the scientists provide further evidence of this salty underground lake, estimated to be 12 miles to 18 miles (20 kilometres to 30 kilometres) across and buried 1 mile (1.5 kilometres) beneath the icy surface.

Even more tantalizing, they’ve also identified three smaller bodies of water surrounding the lake. These ponds appear to be of various sizes and are separate from the main lake.

Roughly 4 billion years ago, Mars was warm and wet, like Earth. But the red planet eventually morphed into the barren, dry world it remains today.

The research team led by Roma Tre University’s Sebastian Emanuel Lauro used a method similar to what’s been used on Earth to detect buried lakes in the Antarctic and Canadian Arctic. They based their findings on more than 100 radar observations by Mars Express from 2010 to 2019; the spacecraft was launched in 2003.

All this potential water raises the possibility of microbial life on – or inside – Mars. High concentrations of salt are likely keeping the water from freezing at this frigid location, the scientists noted. The surface temperature at the South Pole is an estimated minus 172 degrees Fahrenheit (minus 113 degrees Celsius), and gets gradually warmer with depth.

These bodies of water are potentially interesting biologically and “future missions to Mars should target this region,” the researchers wrote.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Another look at possible under-ice lakes on Mars: They’re still there – Ars Technica

Published

 on


In recent decades, we’ve become aware of lots of water on Earth that’s deep under ice. In some cases, we’ve watched this water nervously, as it’s deep underneath ice sheets, where it could lubricate the sheets’ slide into the sea. But we’ve also discovered lakes that have been trapped under ice near the poles, possibly for millions of years, raising the prospect that they could harbor ancient ecosystems.

Now, researchers are applying some of the same techniques that we’ve used to find those under-ice lakes to data from Mars. And the results support an earlier claim that there are bodies of water trapped under the polar ice of the red planet.

Spotting liquids from orbit

Mars clearly has extensive water locked away in the forum of ice, and some of it cycles through the atmosphere as orbital cycles make one pole or the other a bit warmer. But there’s not going to be pure liquid water on Mars—the temperatures just aren’t high enough for very long, and the atmospheric pressures are far too low to keep any liquid water from boiling off into the atmosphere.

Calculations suggest, however, that liquid water is possible on Mars—just not on the surface. With enough dissolved salts, a water-rich brine could remain liquid at the temperatures prevalent on Mars—even in the polar areas. And if it’s trapped under the Martian surface, there might be enough pressure to keep it liquid despite the thin atmosphere. That surface could be Martian soil, and people are thinking about that possibility. But the surface could also be one of the ice sheets we’ve spotted on Mars.

That possibility helped motivate the design of the MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) on the Mars Express orbiter. MARSIS is a radar device that uses wavelengths that water ice is transparent to. As a result, most of the photons that come back to the instrument are reflected by the interface between ice and something else: the atmosphere, the underlying bedrock, and potentially any interface between the ice and a liquid brine underneath it.

And that’s what the original results, published in 2018, seemed to indicate. In an area called Ultimi Scopuli near Mars’ south pole. The researchers saw a bright reflection, distinct from the one caused by the underlying bedrock, at some specific locations under the ice. And they interpreted this as indicating a boundary between ice and some liquid brines.

Now with more data

Two things have changed since those earlier results were done. One is that Mars Express has continued to pass over Mars’ polar regions, generating even more data for analysis. The second is that studies of ice-covered lakes on Earth have also advanced, with new ones identified from orbit using similar data. So some of the team behind the original work decided it was time to revisit the ice sheets at Ultimi Scopuli.

The analysis involves looking at details of the photons reflected back to the MARSIS instrument from a 250 x 300 square kilometer area. One aspect of that is the basic reflectivity of the different layers that can be discerned from the data. Other aspects of the signal can tell us about how smooth the surface of the reflective boundaries are and whether the nature of the boundary changes suddenly.

For example, the transition from an ice-bedrock boundary to an ice-brine one would cause a sudden shift from a relatively weak, uneven signal to a brighter and smoother one.

The researchers generated separate maps of the intensity and the smoothness of the signal and found that the maps largely overlapped, giving them confidence that they were identifying real transitions in the surfaces. A separate measure of the material (called permittivity) showed that it was high in the same location.

Overall, the researchers found that the largest area that’s likely to have water under the ice as about 20 by 30 kilometers. And it’s separated by bedrock features from a number of similar but smaller bodies. Calling these bodies “lakes” is speculative, given that we have no idea how deep they are. But the data certainly is consistent with some sort of under-ice feature—even if we use the standards of detection that have been used for under-ice lakes on Earth.

How did that get there?

The obvious question following the assumption that these bodies are filled with a watery brine is how that much liquid ended up there. We know that these salty solutions can stay liquid at temperatures far below the freezing point. But the conditions on Mars are such that most of minimum temperatures for water to remain liquid are right at the edge of the possible conditions at the site of the polar ice sheets. So some people have suggested geological activity as a possible source of heat to keep things liquid.

That’s not necessarily as unlikely as it may sound. Some groups have proposed that some features indicate that there was magma on the surface of Mars as recently as recently as 2 million years ago. But the researchers here argue that if things are on the edge of working under current climate conditions, there’s no need to resort to anything exceptional.

Instead, they suggest that the sorts of salts we already know are present on Mars can absorb water vapor out of the thin Martian atmosphere. Once formed, these can remain liquid down to 150 Kelvin, when the local temperatures at Ultimi Scopuli are likely to be in the area of 160 Kelvin and increase with depth.

And if that’s true, there could be liquid in many more locations at Mars’ poles. Not all of them are as amenable to orbital imaging as Ultimi Scopuli, but it’s a safe bet that this team will try to find additional ones.

Nature Astronomy, 2020. DOI: 10.1038/s41550-020-1200-6 (About DOIs).

Let’s block ads! (Why?)



Source link

Continue Reading

Trending