Globular clusters are densely-packed collections of stars bound together gravitationally in roughly-shaped spheres. They contain hundreds of thousands of stars. Some might contain millions of stars.
Sometimes globular clusters (GCs) kick stars out of their gravitational group. How does that work?
There are a few things that can cause GCs to eject stars. Gravitational scattering, supernovae, tidal disruption events, and physical collisions could all be responsible. Whatever’s behind it, the gradual ejection of stars from GCs is an established phenomenon.
The evidence for stellar ejection from GCs is in the tidal tails that stream out from them.
“Recent exquisite kinematic data from the Gaia space telescope has revealed numerous stellar streams in the Milky Way (MW) and traced the origin of many to specific MWGCs, highlighting the need for further examination of stellar escape from these clusters,” the authors write. This study is the first of a series, and the authors examine all the escape mechanisms and how each one contributes to GC star loss.
GCs are some of the oldest stellar associations in the Milky Way. Individual GC stars are also older and have lower metallicity than the Milky Way’s general population. Nearly all galaxies host GCs, and in spiral galaxies like ours, the GCs are mostly found in the halo. The Milky way hosts more than 150 of them. Astronomers used to think that stars in a GC form from the same molecular cloud, but now they know that that’s not true. GCs contain stars of different ages and metallicities.
GCs are different from their cousins, the open clusters (OCs). OCs are most often found in the disks of spiral galaxies, have more heavy elements, and are less dense and also smaller than GCs. OCs have only a few thousand stars, and there are more than 1100 of them in the Milky Way.
GCs are unique, and astronomers consider them tracers of galactic evolution. Thanks largely to the ESA’s Gaia spacecraft, we know more about GCs. Gaia helped reveal the presence of numerous stellar streams coming from the Milky Way’s globular clusters. As the authors explain in their paper, “These drawn-out associations of stars on similar orbits are likely debris from disrupted dwarf galaxies and their GCs, shorn off by Galactic tides during accretion by the MW (Milky Way.)”
Gaia did more than spot these streams. It was able to connect some streams to specific GCs. “Gaia’s exquisite kinematic data has firmly tied the origins of ~10 especially thin streams to specific MWGCs,” the authors write. The Palomar 5 GC and its streams are well-known examples. The streams are excellent tracers of the Milky Way’s evolution. (Palomar 5 gained even more notoriety in astronomy recently when a 2021 paper found more than 100 black holes in its center.)
Observations of these types of tails, both from stars ejected from GCs, and from interacting and merging galaxies, are an extremely active area of research. There are many astounding images of these interactions. But as the authors point out, “… the theoretical study of stellar escape from GCs has a longer history.” Astronomers have come up with different mechanisms for these escapes, and this paper starts with a review of each one.
The authors divide escape mechanisms into two categories: Evaporation and Ejection. Evaporation is gradual, while ejection is more abrupt. The following are brief descriptions of each of the ejection methods, beginning with the Evaporation category.
Two-Body Relaxation: the motions of each body induce granular perturbations that create exchanges in energy and momentum in the bodies. Over time, stars can be ejected from GCs.
Cluster mass loss: stars lose mass over time, and that can affect the gravitational binding that holds stars in the cluster.
Sharply time-dependent tides: MWGCs orbit the Milky Way in eccentric and inclined orbits. The galactic tide will be stronger at some points in the orbit. The changing gravity can allow stars to exit the GCs.
The second broad category is Ejection. These are events typically involving single stars that are ejected rapidly and dramatically.
Strong Encounters: a close passage between two or more bodies that provides a strong enough kick to eject a star.
(Near)-Contact Recoil: encounters so close that tides, internal stellar processes, and/or relativistic effects are relevant. This includes collisions and gravitational waves.
Stellar Evolution Recoil: This includes the powerful forces unleashed when a star goes supernova, for example, or when a black hole or neutron star is formed.
Since there was no way to go and observe a statistically significant number of GC ejections, the team of researchers took what data was available and performed simulations. They used what’s called the CMC Cluster Catalog.
The study is concerned with the two types of GCs: non-core collapsed and core-collapsed. They’re different from each other and are a fundamental property of GCs, so the team simulated both types.
Core collapse in GCs occurs when the more massive stars in a GC encounter less massive stars. This creates a dynamic process that, over time, drives some stars out of the center of the GC towards the outside. This creates a net loss of kinetic energy in the core, so the remaining stars in the GCs core take up less space, creating a collapsed core.
An important astronomical principle plays a role in the team’s results. Two-body relaxation is a fundamental aspect of stellar associations that has far-reaching effects. It’s a complicated topic, but it basically describes the ways that stars in stellar associations, such as GCs, interact gravitationally and share kinetic energy with each other. It shows that star-to-star interactions drive GCs to evolve during the lifetime of the galaxy they’re attached to.
Not surprisingly, the researchers found that two-body relaxation plays a powerful role. That conclusion lines up with the established theory. “Consistent with longstanding theory and numerical modelling, we find that two-body relaxation in the cluster core dominates the overall escape rate,” they write.
They also found that “… central strong encounters involving binaries contribute especially high-speed
ejections, as do supernovae and gravitational wave-driven mergers.” This also lines up with other research.
But one of their results is new. It concerns three-body binary formation (3BBF.) 3BBF is when three bodies collide to form a new binary object. “We have also shown for the first time that three-body binary formation plays a significant role in the escape dynamics of non-core-collapsed GCs typical of those in the MW. BHs are an essential catalyst for this process,” they write. “3BBF dominates the rate of present-day high-speed ejections over any other mechanism,” they explain, as long as significant numbers of BHs remain in the GCs core. 3BBFs also produce a significant number of hypervelocity stars.
In their conclusion, the authors explain that “… this study provides a broad sense of the escape mechanisms and demographics of escapers from GCs,” while also noting that the results are “not immediately comparable to Gaia observations.” That’s why this work is the first in a series of papers. In their follow-up paper, they intend to integrate the trajectories of escaped stars and construct their velocity distributions to reproduce tidal tails. After that work, they hope that they’ll have a clearer understanding of how stars escaping from GC contribute to galactic evolution.
In a third paper, they intend to “… identify likely past members (‘extratidal candidates’) of specific MWGCs and directly compare the mock ejecta from our cluster models to the Gaia data.” This will get closer to some of the core questions surrounding GCs and the Milky Way’s evolution: how do stellar streams form? How many BHs are there in GCs? What role do supernovae play?
“Ultimately, we hope to better understand stellar stream formation and, in an ideal case, leverage the new
observables from Gaia to better constrain uncertain properties about MWGCs, such as BH content, SNe kicks, and the initial mass function, which affect ejection velocities and the cluster evaporation rate.”
This study is an interesting look at how a number of natural phenomena all contribute to galactic evolution. The evolution of individual stars, how individual stars interact gravitationally and how they form binary objects, the tidal interactions between globular clusters and their host galaxies, two-body relaxation, and even three-body binary formation. Throw in supernovae and hypervelocity stars.
Each one of these topics can form the basis of an entire career in astrophysics. It’s easy to see why follow-up studies are needed. Once they’re completed, we’ll have a much better picture of how galaxies, specifically our own Milky Way, evolve.
More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.
That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.
“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”
The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.
Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.
Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.
Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.
Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.
Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.
“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”
The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.
North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.
Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”
Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.
Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.
For Dello, the “fingerprints of climate change” were clear.
“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”
Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.
It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.
On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.
They call it “Big Sam.”
The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.
It didn’t die alone.
“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.
She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”
“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.
The head alone, she said, is about the size of a baby elephant.
The discovery was a long time coming.
The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.
“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.
When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”
“It contains about 100 to 300 bones per square metre,” she said.
Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.
About a year ago, they found the second adult: Big Sam.
Bamforth said both dinosaurs are believed to have been the elders in the herd.
“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.
“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”
The genders of the two adults are unknown.
Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.
The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.
She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.
“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.
“It’s pretty exciting.”
This report by The Canadian Press was first published Sept. 25, 2024.
TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.
Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.
Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.
The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.
The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.
It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.
Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.
Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.
Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.
Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.
Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.
The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”