How to Create a Black Hole Out of Thin Air - The New York Times | Canada News Media
Connect with us

Science

How to Create a Black Hole Out of Thin Air – The New York Times

Published

 on


Black holes were thought to arise from the collapse of dead stars. But a Webb telescope image showing the early universe hints at an alternative pathway.

How many ways are there to leave this universe?

Perhaps the best known exit entails the death of a star. In 1939 the physicist J. Robert Oppenheimer and his student Harlan Snyder, of the University of California, Berkeley, predicted that when a sufficiently massive star runs out of thermonuclear fuel, collapses inward and keeps collapsing forever, shrink-wrapping space, time and light around itself in what today is called a black hole.

But it turns out that a dead star might not be needed to make a black hole. Instead, at least in the early universe, giant clouds of primordial gas may have collapsed directly into black holes, bypassing millions of years spent in stardom.

That is the tentative conclusion recently reached by a group of astronomers studying UHZ-1, a speck of light dating from not long after the Big Bang. In fact, UHZ-1 is (or was) a powerful quasar that spat fire and X-rays from a monstrous black hole 13.2 billion years ago, when the universe was not quite 500 million years young.

That is unusually soon, cosmically speaking, for so massive a black hole to have come into being through stellar collapses and mergers. Priyamvada Natarajan, an astronomer at Yale and the lead author of a paper published in the Astrophysical Journal Letters, and her colleagues, contend that in UHZ-1 they have discovered a new celestial species, which they call an overmassive black hole galaxy, or O.B.G. In essence, an O.B.G. is a young galaxy anchored by a black hole that became too big too fast.

The discovery of this precocious quasar could help astronomers solve a related puzzle that has tantalized them for decades. Nearly every galaxy visible in the modern universe seems to harbor at its center a supermassive black hole millions of billions of times as massive as the sun. Where did those monsters come from? Could ordinary black holes have grown so large so fast?

Dr. Natarajan and her colleagues propose that UHZ-1, and so perhaps many supermassive black holes, began as primordial clouds. These clouds could have collapsed into kernels that were precociously heavy — and were sufficient to jump-start the growth of overmassive black hole galaxies. They are another reminder that the universe we see is governed by the invisible geometry of darkness.

“As the first O.B.G. candidate, UHZ-1 provides compelling evidence for the formation of heavy initial seeds from direct collapse in the early universe,” Dr. Natarajan and her colleagues wrote. In an email, she added: “Nature does seem to make BH seeds many ways, beyond just stellar death!”

Daniel Holz, a theorist at the University of Chicago who studies black holes said: “Priya has found an extremely exciting black hole, if true.”

He added, “It is simply too big too early. It’s like looking in at a kindergarten classroom and there among all the 5-year-olds is one that is 150 pounds and/or six feet tall.”

According to the story that astronomers have been telling themselves about the evolution of the universe, the first stars condensed out of clouds of hydrogen and helium left over from the Big Bang. They burned hot and fast, quickly exploding and collapsing into black holes 10 to 100 times as massive as the sun.

Over eons, successive generations of stars were formed from the ashes of previous stars, enriching the chemistry of the cosmos. And the black holes left over from their deaths kept merging and growing somehow, into the supermassive black holes at the centers of galaxies.

The James Webb Space Telescope, launched two years ago this Christmas, was designed to test this idea. It possesses the biggest mirror in space, 21 feet in diameter. More important, it was designed to record infrared wavelengths from the light of the most distant and therefore earliest stars in the universe.

But as soon as the new telescope was trained on the sky, it caught sight of new galaxies so massive and bright that they defied cosmologists’ expectations. Arguments have raged for the last couple of years about whether these observations in fact threaten a longstanding model of the cosmos. The model describes the universe as composed of a trace of visible matter, astounding amounts of “dark matter,” which provides the gravity to hold galaxies together, and “dark energy,” pushing these galaxies apart.

The discovery of UHZ-1 represents an inflection point in these debates. In preparation for a future observation by the James Webb Space Telescope of a massive cluster of galaxies in the constellation Sculptor, Dr. Natarajan’s team asked for time on NASA’s Chandra X-ray Observatory. The cluster’s mass acts as a gravitational lens, magnifying objects far behind it in space and time. The researchers hoped to get a glimpse in X-rays of whatever the lens might bring into view.

What they found was a quasar powered by a supermassive black hole about 40 million times as massive as the sun. Further observations by the Webb telescope confirmed that it was 13.2 billion light-years away. (The Sculptor cluster is about 3.5 billion light-years away.) It was the most distant and earliest quasar yet found in the universe.

“We needed Webb to find this remarkably distant galaxy, and Chandra to find its supermassive black hole,” Akos Bogdan of the Center for Astrophysics Harvard & Smithsonian said in a news release. “We also took advantage of a cosmic magnifying glass that boosted the amount of light we detected.”

The results indicate that supermassive black holes existed as early as 470 million years after the Big Bang. That isn’t enough time to allow the black holes created by the first generation of stars — starting out at 10 to 100 solar masses — to grow so big.

Was there another way to make even bigger black holes? In 2017 Dr. Natarajan suggested that collapsing clouds of primordial gas could have birthed black holes more than 10,000 times as massive as the sun.

“You can then imagine one of these subsequently growing into this young, precociously large black hole,” Dr. Holz said. As a result, he noted, “at every subsequent time in the universe’s history there will always be some surprisingly large black holes.”

Dr. Natarajan said, “The fact that these start out in life overmassive implies that they will likely eventually evolve into supermassive black holes.” But no one knows how that works. Black holes make up 10 percent of the mass in the early quasar UHZ-1, whereas they compose less than one one-thousandth of a percent of the mass of modern-day galaxies like the giant Messier 87, whose black hole weighed in at 6.5 billion solar masses when its picture was taken by the Event Horizon Telescope in 2019.

That suggests that complicated environmental feedback effects dominate the growth and evolution of these galaxies and their black holes, causing their mass in stars and gas to bulk up.

“So in effect these extremely early O.B.G.s are really telegraphing much more information about, and illuminating, seeding physics rather than later growth and evolution,” Dr. Natarajan said. She added: “Though they have important implications.”.

Dr. Holz said, “It would certainly be cool if it turns out to be what’s happening, but I’m genuinely agnostic.” He added, “It’s going to be a fascinating story no matter how we solve the mystery of early big black holes.”

Adblock test (Why?)



Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

B.C. sets up a panel on bear deaths, will review conservation officer training

Published

 on

 

VICTORIA – The British Columbia government is partnering with a bear welfare group to reduce the number of bears being euthanized in the province.

Nicholas Scapillati, executive director of Grizzly Bear Foundation, said Monday that it comes after months-long discussions with the province on how to protect bears, with the goal to give the animals a “better and second chance at life in the wild.”

Scapillati said what’s exciting about the project is that the government is open to working with outside experts and the public.

“So, they’ll be working through Indigenous knowledge and scientific understanding, bringing in the latest techniques and training expertise from leading experts,” he said in an interview.

B.C. government data show conservation officers destroyed 603 black bears and 23 grizzly bears in 2023, while 154 black bears were killed by officers in the first six months of this year.

Scapillati said the group will publish a report with recommendations by next spring, while an independent oversight committee will be set up to review all bear encounters with conservation officers to provide advice to the government.

Environment Minister George Heyman said in a statement that they are looking for new ways to ensure conservation officers “have the trust of the communities they serve,” and the panel will make recommendations to enhance officer training and improve policies.

Lesley Fox, with the wildlife protection group The Fur-Bearers, said they’ve been calling for such a committee for decades.

“This move demonstrates the government is listening,” said Fox. “I suspect, because of the impending election, their listening skills are potentially a little sharper than they normally are.”

Fox said the partnership came from “a place of long frustration” as provincial conservation officers kill more than 500 black bears every year on average, and the public is “no longer tolerating this kind of approach.”

“I think that the conservation officer service and the B.C. government are aware they need to change, and certainly the public has been asking for it,” said Fox.

Fox said there’s a lot of optimism about the new partnership, but, as with any government, there will likely be a lot of red tape to get through.

“I think speed is going to be important, whether or not the committee has the ability to make change and make change relatively quickly without having to study an issue to death, ” said Fox.

This report by The Canadian Press was first published Sept. 9, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

Science

Asteroid Apophis will visit Earth in 2029, and this European satellite will be along for the ride

Published

 on

The European Space Agency is fast-tracking a new mission called Ramses, which will fly to near-Earth asteroid 99942 Apophis and join the space rock in 2029 when it comes very close to our planet — closer even than the region where geosynchronous satellites sit.

Ramses is short for Rapid Apophis Mission for Space Safety and, as its name suggests, is the next phase in humanity’s efforts to learn more about near-Earth asteroids (NEOs) and how we might deflect them should one ever be discovered on a collision course with planet Earth.

In order to launch in time to rendezvous with Apophis in February 2029, scientists at the European Space Agency have been given permission to start planning Ramses even before the multinational space agency officially adopts the mission. The sanctioning and appropriation of funding for the Ramses mission will hopefully take place at ESA’s Ministerial Council meeting (involving representatives from each of ESA’s member states) in November of 2025. To arrive at Apophis in February 2029, launch would have to take place in April 2028, the agency says.

This is a big deal because large asteroids don’t come this close to Earth very often. It is thus scientifically precious that, on April 13, 2029, Apophis will pass within 19,794 miles (31,860 kilometers) of Earth. For comparison, geosynchronous orbit is 22,236 miles (35,786 km) above Earth’s surface. Such close fly-bys by asteroids hundreds of meters across (Apophis is about 1,230 feet, or 375 meters, across) only occur on average once every 5,000 to 10,000 years. Miss this one, and we’ve got a long time to wait for the next.

When Apophis was discovered in 2004, it was for a short time the most dangerous asteroid known, being classified as having the potential to impact with Earth possibly in 2029, 2036, or 2068. Should an asteroid of its size strike Earth, it could gouge out a crater several kilometers across and devastate a country with shock waves, flash heating and earth tremors. If it crashed down in the ocean, it could send a towering tsunami to devastate coastlines in multiple countries.

Over time, as our knowledge of Apophis’ orbit became more refined, however, the risk of impact  greatly went down. Radar observations of the asteroid in March of 2021 reduced the uncertainty in Apophis’ orbit from hundreds of kilometers to just a few kilometers, finally removing any lingering worries about an impact — at least for the next 100 years. (Beyond 100 years, asteroid orbits can become too unpredictable to plot with any accuracy, but there’s currently no suggestion that an impact will occur after 100 years.) So, Earth is expected to be perfectly safe in 2029 when Apophis comes through. Still, scientists want to see how Apophis responds by coming so close to Earth and entering our planet’s gravitational field.

“There is still so much we have yet to learn about asteroids but, until now, we have had to travel deep into the solar system to study them and perform experiments ourselves to interact with their surface,” said Patrick Michel, who is the Director of Research at CNRS at Observatoire de la Côte d’Azur in Nice, France, in a statement. “Nature is bringing one to us and conducting the experiment itself. All we need to do is watch as Apophis is stretched and squeezed by strong tidal forces that may trigger landslides and other disturbances and reveal new material from beneath the surface.”

The Goldstone radar’s imagery of asteroid 99942 Apophis as it made its closest approach to Earth, in March 2021. (Image credit: NASA/JPL–Caltech/NSF/AUI/GBO)

By arriving at Apophis before the asteroid’s close encounter with Earth, and sticking with it throughout the flyby and beyond, Ramses will be in prime position to conduct before-and-after surveys to see how Apophis reacts to Earth. By looking for disturbances Earth’s gravitational tidal forces trigger on the asteroid’s surface, Ramses will be able to learn about Apophis’ internal structure, density, porosity and composition, all of which are characteristics that we would need to first understand before considering how best to deflect a similar asteroid were one ever found to be on a collision course with our world.

Besides assisting in protecting Earth, learning about Apophis will give scientists further insights into how similar asteroids formed in the early solar system, and, in the process, how  planets (including Earth) formed out of the same material.

One way we already know Earth will affect Apophis is by changing its orbit. Currently, Apophis is categorized as an Aten-type asteroid, which is what we call the class of near-Earth objects that have a shorter orbit around the sun than Earth does. Apophis currently gets as far as 0.92 astronomical units (137.6 million km, or 85.5 million miles) from the sun. However, our planet will give Apophis a gravitational nudge that will enlarge its orbit to 1.1 astronomical units (164.6 million km, or 102 million miles), such that its orbital period becomes longer than Earth’s.

It will then be classed as an Apollo-type asteroid.

Ramses won’t be alone in tracking Apophis. NASA has repurposed their OSIRIS-REx mission, which returned a sample from another near-Earth asteroid, 101955 Bennu, in 2023. However, the spacecraft, renamed OSIRIS-APEX (Apophis Explorer), won’t arrive at the asteroid until April 23, 2029, ten days after the close encounter with Earth. OSIRIS-APEX will initially perform a flyby of Apophis at a distance of about 2,500 miles (4,000 km) from the object, then return in June that year to settle into orbit around Apophis for an 18-month mission.

Related Stories:

Furthermore, the European Space Agency still plans on launching its Hera spacecraft in October 2024 to follow-up on the DART mission to the double asteroid Didymos and Dimorphos. DART impacted the latter in a test of kinetic impactor capabilities for potentially changing a hazardous asteroid’s orbit around our planet. Hera will survey the binary asteroid system and observe the crater made by DART’s sacrifice to gain a better understanding of Dimorphos’ structure and composition post-impact, so that we can place the results in context.

The more near-Earth asteroids like Dimorphos and Apophis that we study, the greater that context becomes. Perhaps, one day, the understanding that we have gained from these missions will indeed save our planet.

 

Source link

Continue Reading

Trending

Exit mobile version