adplus-dvertising
Connect with us

Science

Interstellar Comet 2I/Borisov Formed in a Very Cold Environment – Universe Today

Published

 on


In the summer of 2019, a team of astronomers from NASA, the ESA, and the International Scientific Optical Network (ISON) announced the detection of the comet 2I/Borisov. This comet was the only second interstellar visitor observed passed through our Solar System, coming on the heels of the mysterious ‘Oumuamua. For this reason, astronomers from all over the world watched this comet intently as it made its closest pass to the Sun.

One such group, led by Martin Cordiner and Stefanie Milam of NASA’s Goddard Space Flight Center, observed 2I/Borisov using the ESO’s Atacama Large Millimeter/submillimeter Array (ALMA) in the Chilean Andes. This allowed them to observe the gases 2I/Borisov released as it moved closer to our Sun, thus providing the first-ever chemical composition readings of an interstellar object.

300x250x1

Astronomers are naturally interested in the study of comets because they are essentially material left over from the formation of the Solar System. In addition, they spend most of their lives at large distances from any star and in very cold environments. The majority of comets observed in the Solar System, for example, originated in the Kuiper Belt or the Oort Cloud, depending on whether they are short-period or long-period comets.

[embedded content]

In addition, the interior composition of comets has not changed significantly since the formation of the Solar System. Therefore, the study of their interiors can tell scientists a great deal about the processes that occurred during their birth in protoplanetary disks. This becomes possible as comets draw closer to their suns and their ices begin to sublimate (a process known as “outgassing.”)

Interstellar comets are of particular interest to astronomers because they can tell us a great deal about the formation and evolution of star systems other than our own. When they observed 2I/Borisov, the team detected two types of gas molecules being ejected from the comet: hydrogen cyanide (CHN) and carbon monoxide (CO). The study that describes these findings recently appeared in the journal Nature.

While the team expected to see the former, which is present in 2I/Borisov in similar concentrations to what has been observed in Solar System comets, they were surprised to see large amounts of CO as well. In fact, the CO concentrations were estimated to be 9 to 26 times higher than the average Solar System comet or any comet detected within 2 AU of the Sun (twice the distance between the Earth and the Sun.)

“The comet must have formed from material very rich in CO ice, which is only present at the lowest temperatures found in space, below -420 degrees Fahrenheit (-250 degrees Celsius),” said planetary scientist Stefanie Milam in a recent NRAO press release.

ALMA images showing hydrogen cyanide (HCN) and Carbon monoxide (CO) gas being released from 2I/Borisov. Credit: ALMA (ESO/NAOJ/NRAO), M. Cordiner & S. Milam; NRAO/AUI/NSF, S. Dagnello

While CO is one of the most plentiful molecules in space and is found inside most comets, there are typically huge variation in terms of its concentration in comets – for reasons which remain unknown. This may be a result of where they formed in the Solar System and/or how often a comet gets closer to the Sun and loses some of its more-easily evaporated ices. As astrochemist Martin Cordiner explained:

“This is the first time we’ve ever looked inside a comet from outside our solar system, and it is dramatically different from most other comets we’ve seen before… If the gases we observed reflect the composition of 2I/Borisov’s birthplace, then it shows that it may have formed in a different way than our own solar system comets, in an extremely cold, outer region of a distant planetary system.”

In all previous cases where ALMA was used to study protoplanetary disks, those disks were found around Sun-like stars. At the same time, many disks extended far beyond where comets in the Solar System are believed to have formed and contained large amounts of extremely cold gas and dust. While the team can only speculate at this point, they believe it is possible that 2I/Borisov came from one of these larger disks.

Given the speed with which it traveled through our Solar System (33 km/s; 21 mps), astronomers suspect that 2I/Borisov was likely to have been kicked out of its host system by gravitational interaction – possibly from a passing star or a giant planet. After that, it is thought to have spent millions or billions of years travelling through the extreme cold of interstellar space before arriving in our Solar System.

Labeled version of four of the twenty disks that comprise ALMA’s highest resolution survey of nearby protoplanetary disks. Credit: ALMA (ESO/NAOJ/NRAO) S. Andrews et al.; NRAO/AUI/NSF, S. Dagnello

2I/Borisov was discovered on August 30th, 2019 by amateur astronomer Gennady Borisov, who it was named in honor of. The only other insteallr object observed – 1I/’Oumuamua – was already on its way out of the Solar System when it was first detected, which made it very difficult to study the object and determine if it was an asteroid, a comet, a fragment of a comet, or something else entirely (like an alien spacecraft or derelict).

In 2I/Borisov’s case, the presence of an active gas and dust coma surrounding it confirmed that it was the first known interstellar comet to ever be observed. The fact that it’s composition is unlike that of comets observed in the Solar System only makes it more appealing for researchers, and is an invitation to find more interstellar comets. As Milam put it:

“2I/Borisov gave us the first glimpse into the chemistry that shaped another planetary system. But only when we can compare the object to other interstellar comets, will we learn whether 2I/Borisov is a special case, or if every interstellar object has unusually high levels of CO.”

In addition to the many ground-based and space-based telescopes that will be on the lookout for interstellar asteroids and comets in the future, there is also compelling evidence that many interstellar objects that arrived in the past ended up staying here. There are even proposals in place to send a spacecraft to rendezvous with an interstellar object in the future, like the ESA’s Comet Interceptor.

[embedded content]

There’s no telling when the next interstellar comet or asteroid will pass through our Solar System, or whether or not we will be able to study it up-close using a spacecraft. One thing that is certain is that any future visitors will offer astronomers the opportunity to learn more about other star systems, like their compositions and how planets form within them.

The international team behind this study included members from the Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), the STAR Institute, the National Radio Astronomy Observatory (NRAO), the Institut de RAdioastronomie Millimétrique (IRAM), multiple universities, the NASA Jet Propulsion Laboratory and NASA HQ.

Since the team led by Cordiner and Milam made their observations, 2I/Borisov appears to have split into two objects (aka. “calving.”) This occurred in late March as the comet was making its way back into interstellar space. The venerable Hubble was able to catch a final glimpse of “Little Boris and Big Boris” as they departed our Solar System, perhaps never to be seen again.

Further Reading: NRAO, Nature

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

Science

NASA hears from Voyager 1, the most distant spacecraft from Earth, after months of quiet

Published

 on

 

CAPE CANAVERAL, Fla. (AP) – NASA has finally heard back from Voyager 1 again in a way that makes sense.

The most distant spacecraft from Earth stopped sending back understandable data last November. Flight controllers traced the blank communication to a bad computer chip and rearranged the spacecraft’s coding to work around the trouble.

NASA’s Jet Propulsion Laboratory in Southern California declared success after receiving good engineering updates late last week. The team is still working to restore transmission of the science data.

300x250x1

It takes 22 1/2 hours to send a signal to Voyager 1, more than 15 billion miles (24 billion kilometers) away in interstellar space. The signal travel time is double that for a round trip.

Contact was never lost, rather it was like making a phone call where you can’t hear the person on the other end, a JPL spokeswoman said Tuesday.

Launched in 1977 to study Jupiter and Saturn, Voyager 1 has been exploring interstellar space – the space between star systems – since 2012. Its twin, Voyager 2, is 12.6 billion miles (20 billion kilometers) away and still working fine.

 

728x90x4

Source link

Continue Reading

Science

SpaceX launches 23 Starlink satellites from Florida (photos)

Published

 on

SpaceX sent yet another batch of its Starlink internet satellites skyward today (April 23).

A Falcon 9 rocket topped with 23 Starlink spacecraft lifted off from Florida’s Cape Canaveral Space Force Station today at 6:17 p.m. EDT (2217 GMT).

The Falcon 9’s first stage came back to Earth for a vertical landing about 8.5 minutes after launch as planned. It touched down on the SpaceX droneship Just Read the Instructions, which was stationed in the Atlantic Ocean.

It was the ninth launch and landing for this particular booster, according to a SpaceX mission description. Five of its previous eight liftoffs were Starlink missions.

300x250x1

The Falcon 9’s upper stage will continue carrying the 23 Starlink satellites toward low Earth orbit (LEO) today, deploying them about 65 minutes after liftoff.

This evening’s launch was the 41st of the year for SpaceX, and the 28th of 2024 dedicated to building out the huge and ever-growing Starlink megaconstellation. There are nearly 5,800 operational Starlink satellites in LEO at the moment, according to astrophysicist and satellite tracker Jonathan McDowell.

The Starlink launch ended up being the first half of a spaceflight doubleheader: A Rocket Lab Electron vehicle launched two satellites, including a NASA solar-sailing technology demonstrator, from New Zealand today at 6:33 p.m. EDT (2233 GMT).

Editor’s note: This story was updated at 6:30 p.m. ET on April 23 with news of successful launch and first-stage landing.

 

728x90x4

Source link

Continue Reading

Science

Exploring ecological networks in a digital world | News | Vancouver Island University | Canada – Vancouver Island University News

Published

 on


Getting to know Samantha Letourneau

By day, Samantha Letourneau is Vancouver Island University’s Canada Learning Bond project lead and Volunteer Tutor Coordinator. She’s also a musician and dancer and for the past two years, she’s been collaborating with Swedish artist Mårten Spångberg, thanks to funding obtained through Crimson Coast Dance, to create a digital art installation that goes live on Friday, April 26. A launch event takes place at Black Rabbit restaurant in the Old City Quarter that night. Samantha is also hosting a creative process workshop on April 27 and 28.

Can you share a bit about your background as an artist and how you got into it?

I have been working in art for a very long time, as a musician and dancer as well as an art administrator and program coordinator. I started music at the age of 11 and dance came later in my life in my early 20s. I always wanted to do dance, but I grew up in a small community in Yellowknife and at that time the only dance classes available were highland dancing, which I was not very interested in. 

In my early 20s while living in Vancouver, I took classes in contemporary dance and was fortunate to land a small part in the Karen Jameison Dance company for a piece called The River. The River was about rivers and connection between the reality of a real and physical outdoor river and the different reality of “the river within.” It was both a piece of art and outreach for the community. It included working with the S’pak’wus Slu’lum Dancers of the Squamish Nation. Somewhat ground-breaking for 1998.

300x250x1

From there I was hooked and wanted to do more in dance. I studied a lot and took many classes. Fast forward to now, I have been involved with productions and performances with Crimson Coast Dance for more than 15 years and greatly appreciate the talent and innovation that Artistic Director Holly Bright has brought to this community. She is amazing and very supportive of artists in Nanaimo.

How did this international exchange come about?

The Nordic/Nanaimo exchange is one of the innovative projects Holly created. At the height of the pandemic, funded by BC Arts Council and Made In BC, Crimson Coast Dance embarked on a project that explored the ways in which Nanaimo artists could participate in online exchanges. 

Two artists in Nanaimo – myself and Genevieve Johnson – were introduced to artists from Europe and supported through this international exchange. My collaborator, Mårten Spångberg, is a Swedish artist living and working in Berlin. An extension of that exchange is funded by Canada Council for the Arts – Digital Now.

What brought Mårten and myself together – and I quote Mårten here – is “questions around climate change, ecology and the influence contemporary society has on its environments. We are not interested in making art about the ecological crises or informing our audience about the urgency that climate change implies, but instead through our research develop work that in itself proposes, practices and engages in alternative ecologies.”

We share an understanding that art is a unique place, in the sense of practice, activation, performance and event, through which alternative ecologies can emerge and be probed and analyzed.

Tell us about the launch event.

We are launching the digital art installation that Mårten and I created on April 26 at The Attic at Black Rabbit Restaurant. The event is free to attend but people must sign up as seating is limited. I produced video art with soundscapes that I recorded mixing field recordings with voice and instrumentation. Marten explores text, imagery and AI.

My focus is on the evolving and ongoing process of how we communicate with each other and to nature within a digital context.

During our collaboration, Mårten and I talked about networks, though not just the expansive digital network of the internet but of nature. We shared thoughts on mycelium, a network of fungal threads or hyphae, that lately has received much attention on the importance of its function for the environment, including human beings.

Building off this concept, ideas of digital and ecological landscapes being connected emerged. From this we worked both collaboratively and individually to produce material for this digital project. Mårten will be there via Zoom as well and we will talk about this two-year process and the work we created together.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending