Life found in rocks beneath ocean floor give scientists hope of finding life on Mars | Canada News Media
Connect with us

Science

Life found in rocks beneath ocean floor give scientists hope of finding life on Mars

Published

 on

When scientists find microbial life thriving in some of the most extreme environments on Earth, it gives them hope that they may be able to find life on other planets.

Now, researchers have discovered billions of bacteria living in tiny cracks in volcanic rocks beneath the ocean floor, more than nine miles below the surface of the ocean and an additional 300 feet below the ocean floor, according to a new study published Thursday.

And they believe that similar tiny, clay-filled cracks in rocks on Mars or below its surface could be a similar hub for life.

The upper oceanic crust, known as the ocean floor, has been continuously created on Earth for about 3.8 billion years. Underwater volcanoes release lava at 2,200 degrees Fahrenheit that solidifies into basaltic rock as the hot rock reacts to the cold ocean deep.

Hydrothermal vents along the ocean floor have been known to sustain bacteria and other life that convert minerals into energy, rather than light.

Previously, researchers have studied bacteria systems that were between 3.5 and 8 million years old. But 90% of the ocean floor is much older than that.

Yohey Suzuki, an associate professor in the University of Tokyo’s Department of Earth and Planetary Science, and his colleagues investigated samples of basaltic lava found 328 feet below the ocean floor between Tahiti and New Zealand that ranged from 33 to 104 million years old.

There, they found a wealth of single-celled microbial life living in tiny cracks among the rock, which were rich with iron and clay. To be exact, they estimate that 10 billion bacterial cells live per cubic centimeter in these communities. (Bacteria known to live in mud along the seafloor pales in comparison, at 100 cells per cubic centimeter.)

The researchers believe the iron content in the clay found deep below the ocean floor supports the growth of such large bacterial communities. The study published in the journal Communications Biology.

“I thought it was a dream, seeing such rich microbial life in rocks,” Suzuki said, “I am now almost over-expecting that I can find life on Mars. If not, it must be that life relies on some other process that Mars does not have, like plate tectonics.”

From the ocean floor to Mars

The cracks form when the lava cools, creating narrow spaces less than one millimeter across. Millions of years of residue and buildup fill them with mineral-infused clay. Then, bacteria find a nice home in them and settle in.

“These cracks are a very friendly place for life. Clay minerals are like a magic material on Earth; if you can find clay minerals, you can almost always find microbes living in them,” Suzuki said.

The bacteria Suzuki and his colleagues found is similar to how our cells make energy, a process that relies on organic nutrients in oxygen. Instead of the resources humans get from Earth’s surface, they get what they need from the clay minerals.

Clay is something that NASA’s Curiosity rover has explored quite a bit on Mars.

Since Curiosity landed in 2012, it’s been exploring Gale Crater, a vast and dry ancient lake bed with a 16,404-foot mountain — Mount Sharp — at its center.

Streams and lakes likely filled Gale Crater billions of years ago, which is why NASA landed the rover there in 2012. Scientists want to know if ancient Mars once supported microbial life.

Mars, like Earth, also has a basaltic crust that formed four billion years ago. And in recent years, subsurface water and methane have been detected on the Red Planet.

Curiosity has observed and drilled samples of rocks rich in clay from the lake bed.

The clay minerals present in those rocks on the Martian surface could be similar to those in the ocean rock cracks.

“Minerals are like a fingerprint for what conditions were present when the clay formed. Neutral to slightly alkaline levels, low temperature, moderate salinity, iron-rich environment, basalt rock — all of these conditions are shared between the deep ocean and the surface of Mars,” said Suzuki.

His team is collaborating with researchers at NASA’s Johnson Space Center in Houston, Texas, to come up with a plan for examining and analyzing rock samples that will one day be returned from Mars.

A 3D X-ray could help them peek inside the samples and search for cracks filled with minerals — and maybe find evidence of life.

“This discovery of life where no one expected it in solid rock below the seafloor may be changing the game for the search for life in space,” said Suzuki.

Studying the ocean floor

But the quest for bacteria deep beneath the ocean floor is a tricky one.

“Honestly, it was a very unexpected discovery. I was very lucky, because I almost gave up,” said Suzuki.

The samples were collected in 2010 during the Integrated Ocean Drilling Program, an international marine research program, which took researchers from Tahiti to New Zealand. It stopped at three locations along the way, using a 9.7-mile-long metal tube to reach the ocean floor and then drill 410 feet below it. Core samples were retrieved, including mud, sediment and solid rock.

The samples were taken far from hydrothermal vents to prevent contamination, in case the bacteria was carried from one of them to the rocks, and the rocks were sterilized when they were brought up.

Chipping away and grinding the rock didn’t yield any results.

Suzuki, inspired by the thin slices of tissue samples that pathologists use to diagnose diseases, coated the rocks in epoxy to maintain the rock shape, then sliced thin layers. He washed the thin pieces with dye that would stain any DNA present.

Beneath his microscope, he saw green bacterial cells, surrounded by orange clay and black rock. Suzuki was able to conduct whole genome DNA analysis and identify what was living inside the cracks.

He found evidence of life.

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending

Exit mobile version