adplus-dvertising
Connect with us

Science

Look up! The Perseids, one of the year's best meteor showers, peaks next week. – Yahoo News Canada

Published

 on


Look up! The Perseids, one of the year’s best meteor showers, peaks next week.

One of the best shows in the night sky is coming up next week. The Perseid meteor shower peaks on Wednesday night, and this year it is not to be missed!

Right now, as Earth travels along its orbit around the Sun, the planet is passing through a stream of debris left behind by a comet known as 109P/Swift-Tuttle. This comet only passes through the inner solar system once every 133 years or so. However, each year we are treated to a reminder that it’s out there, as Earth sweeps up the bits of icy debris it leaves behind on each pass. When these tiny bits of ice and rock plunge into the atmosphere, they produce the streaks of light we call the Perseid meteor shower.

2016perseid-1024x8142016perseid-1024x814

2016perseid-1024×814

In this 30-second exposure taken with a circular fish-eye lens, a meteor streaks across the sky during the annual Perseid meteor shower on Friday, Aug. 12, 2016, in Spruce Knob, West Virginia. Photo Credit: (NASA/Bill Ingalls)

300x250x1

According to the International Meteor Organization (IMO), under ideal conditions, observers typically see anywhere from 50-75 meteors per hour during the Perseids peak, which occurs around the 12th of August every year. Sometimes, this shower can deliver as many as 100 meteors per hour or more.

The Perseids radiant — where the meteors appear to originate from — is located in the northern sky, near the constellation Perseus. It never sets below the horizon at this time of year. So, rather than having to wait for the radiant to rise during the night, we can start watching for Perseids as soon as the Sun has completely set.

Aug12-PerseidsAug12-Perseids

Aug12-Perseids

The location of the Perseids radiant at around midnight on August 11-12. Credit: Stellarium/Scott Sutherland

Even now, a week before the meteor shower peak, viewers can see perhaps 10-20 Perseids per hour throughout the night. The peak on August 11-12 is the absolute best night to watch. If skies are cloudy that night or the timing isn’t good, NASA says that the most likely time to see meteors, otherwise, is a couple of days on either side of the peak.

Whatever night you get out to watch, the best time to see the Perseids during the night is usually in the hours between midnight and dawn. That is when the sky tends to be the darkest. Also, the meteor shower radiant is high in the sky at that time, which means that we are looking more or less straight into the path of the meteoroid stream.

Perseid-Activity-w-background-NASAPerseid-Activity-w-background-NASA

Perseid-Activity-w-background-NASA

This graph shows the average Perseid meteor activity from 2014-2020. Credits: Graph and background image courtesy NASA

This year, viewing will likely be better than we’ve seen for the past few years, due to the Moon. With the shower peaking only a few days after the New Moon, there will only be a thin crescent Moon in the sky that night, which will set just a few hours after nightfall. This will leave behind a nice dark night sky, which will make it easier for us to see the show!

Read on for tips on how to get the most out of watching a meteor shower.

WHAT’S GOING ON HERE?

Meteor showers happen when Earth encounters a stream of ice, dust, and rock left behind from a comet (or sometimes a special kind of asteroid). As Earth sweeps through the stream, the bits of debris plunge into the planet’s atmosphere, travelling anywhere from 54,000 to 255,000 kilometres per hour. At that speed, these meteoroids compress the air molecules in their path, squeezing them together until they glow white-hot.

The bigger the piece of debris, the brighter and longer-lasting the meteor will be.

Watch below: Dozens of Perseid fireballs captured by NASA in 2020

Click here to view the video

The Perseids occur every year between July 17 and August 26, as Earth passes through the stream of debris from Comet Swift-Tuttle. 109P/Swift-Tuttle was last seen in the inner solar system in 1992. Right now, it’s far out in the solar system, near the orbit of Neptune, and still headed even farther out. It will return in late 2125.

METEOR? METEOROID? METEORITE?

The bright streaks seen from these showers are called meteors.

A meteoroid is a piece of dust, rock or ice floating through space, left over from the formation of our solar system. The smallest – only a few millimetres wide – tend to be called __micrometeoroids. Anything larger than a metre in diameter is usually called an asteroid.

Meteoroid-Meteor-Meteorite-NASA-ROM-Scott SutherlandMeteoroid-Meteor-Meteorite-NASA-ROM-Scott Sutherland

Meteoroid-Meteor-Meteorite-NASA-ROM-Scott Sutherland

A primer on meteoroids, meteors and meteorites. Credits: Scott Sutherland/NASA JPL (Asteroids Ida & Dactyl)/NASA Earth Observatory (Blue Marble)

The more massive an object is as it enters Earth’s atmosphere, the brighter the resulting meteor will be. The brightest are called fireballs, while a fireball that ends with an explosion is known as a bolide.

Some fireballs and bolides result in bits of the meteoroid reaching to the ground. When these are found, they are called meteorites.

Related: Got your hands on a space rock? Here’s how to know for sure

SPECTACULAR PERSEIDS

The Perseids are one of the strongest meteor showers of the entire year, and this alone makes it worth watching. However, there are two other ways this meteor shower distinguishes itself.

First, it has the most fireball meteors of any annual shower.

In the Royal Astronomical Society of Canada’s Observer’s Handbook 2021, Philip McClausland writes “Fireballs are exceptionally bright meteors that are spectacular enough to light up a wide area and attract public attention.”

Watch below: An all-sky camera captures a brilliant Perseid fireball

Click here to view the video

The second is the ability of some Perseid meteors to leave behind a phenomenon known as a persistent train.

Meteors typically flash for a second and are gone. Fireballs can last up to 10 seconds. Every once in a while, though, a meteor will leave behind a trail of glowing ‘smoke’. These can remain visible for up to several minutes or possibly for more than an hour.

Spotting persistent trains is pretty common, depending on the meteor shower. They have only rarely been recorded, though. Studies of them go back decades, but there is little hard evidence to study the phenomenon. Still, scientists have narrowed their cause to one of two likely reasons: ionization or chemiluminescence.

Ionization means that an atom or molecule gains or loses electrons and thus takes on a negative or positive charge. In the case of a persistent train, a fast-moving meteoroid strips away electrons from air molecules along their path. When these ionized molecules pick up a stray electron to balance out their charge, they release a small burst of light.

Chemiluminescence is the production of light through a chemical reaction. When metals like iron and nickel vaporize off the surface of a meteoroid, they can chemically react with ozone and oxygen to produce a glow. Since these processes take much longer than the original meteor flash, the train can persist for some time after the flash goes out.

Watch below to see a persistent train produced by a December Geminids meteor

One of these explanations may account for these glowing trains, or both may cover different occurrences, at different times, and even between individual meteors. It will apparently take more sightings and recordings of this phenomenon to explain them fully.

Related: Want to find a meteorite? Expert Geoff Notkin tells us how!

TIPS FOR WATCHING A METEOR SHOWER

Here is an essential guide on how to get the most out of meteor shower events.

First off, there’s no need to have a telescope or binoculars to watch a meteor shower. Those are great if you want to check out other objects in the sky at the same time — such as Jupiter and Saturn, which are up all night these days. When watching a meteor shower, though, telescopes and binoculars actually make it harder to see the event because they restrict your field of view.

Here’s the three things needed for watching meteor showers:

  • Clear skies,

  • Dark skies, and

  • Patience.

Even a few hours of cloudy skies can ruin an attempt to see a meteor shower. Since the weather is continually changing, be sure to check for updates on The Weather Network on TV, on our website, or from our app.

Living in cities makes it very difficult to see meteor showers. Those living in suburban areas, with dark back yards shielded from street lights by trees and surrounding houses, may see the brightest meteors. Rural areas offer the best viewing, though, as they are far away from city light pollution.

For most Canadians, simply driving out into the surrounding rural areas is usually good enough to get under dark skies. However, if you live anywhere from Windsor to Quebec City, that will be more difficult. Unfortunately, getting far enough outside of one city to escape its light pollution tends to put you under the light pollution dome of the next city over.

Watch below: What light pollution is doing to city views of the Milky Way

Click here to view the video

In these areas, there are a few dark sky preserves. A skywatcher’s best bet for dark skies is usually to drive north and seek out the various Ontario provincial parks or Quebec provincial parks. Even if you’re confined to the parking lot, after hours, these are usually excellent locations to watch (and you don’t run the risk of trespassing on someone’s property).

Once you have verified you have clear skies, and you have limited your exposure to light pollution, this is where having patience comes in.

For best viewing, give your eyes time to adapt to the dark. Typically, this takes about 30 minutes of avoiding any sources of bright light (includes cellphone screens). Just looking up into the sky during this time works fine, and you may even catch some of the brighter meteors in the process.

Lastly, the graphics presented for meteor showers often give a ‘radiant’ point on the field of stars, showing from where the meteors appear to originate. Meteors can flash through the sky anywhere above your head, though. So, don’t focus on any particular point in the sky. Instead, just look straight up and take in as much of the sky as you can, all at once. Also, since our peripheral vision tends to be better at night, you may be surprised at how many meteors you can catch from the corner of your eye!

For more, visit the websites of the Canadian Space Agency and the Royal Astronomical Society of Canada (RASC).

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

An extra moon may be orbiting Earth — and scientists think they know exactly where it came from – Livescience.com

Published

 on


A fast-spinning asteroid that orbits in time with Earth may be a wayward chunk of the moon. Now, scientists think they know exactly which lunar crater it came from.

A new study, published April 19 in the journal Nature Astronomy, finds that the near-Earth asteroid 469219 Kamo’oalewa may have been flung into space when a mile-wide (1.6 kilometers) space rock hit the moon, creating the Giordano Bruno crater.

Kamo’oalewa’s light reflectance matches that of weathered lunar rock, and its size, age and spin all match up with the 13.6-mile-wide (22 km) crater, which sits on the far side of the moon, the study researchers reported.

300x250x1

China plans to launch a sample-return mission to the asteroid in 2025. Called Tianwen-2, the mission will return pieces of Kamo’oalewa about 2.5 years later, according to Live Science’s sister site Space.com.

“The possibility of a lunar-derived origin adds unexpected intrigue to the [Tianwen-2] mission and presents additional technical challenges for the sample return,” Bin Cheng, a planetary scientist at Tsinghua University and a co-author of the new study, told Science.

Related: How many moons does Earth have?

Kamo’oalewa was discovered in 2016 by researchers at Haleakala Observatory in Hawaii. It has a diameter of about 100 to 200 feet (approximately 30 to 60 meters, or about the size of a large Ferris wheel) and spins at a rapid clip of one rotation every 28 minutes. The asteroid orbits the sun in a similar path to Earth, sometimes approaching within 10 million miles (16 million km).

window.sliceComponents = window.sliceComponents || ;

externalsScriptLoaded.then(() => {
window.reliablePageLoad.then(() => {
var componentContainer = document.querySelector(“#slice-container-newsletterForm-articleInbodyContent-UG4KJ7zrhxAytcHZQxVzXK”);

if (componentContainer)
var data = “layout”:”inbodyContent”,”header”:”Sign up for the Live Science daily newsletter now”,”tagline”:”Get the worldu2019s most fascinating discoveries delivered straight to your inbox.”,”formFooterText”:”By submitting your information you agree to the Terms & Conditions and Privacy Policy and are aged 16 or over.”,”successMessage”:”body”:”Thank you for signing up. You will receive a confirmation email shortly.”,”failureMessage”:”There was a problem. Please refresh the page and try again.”,”method”:”POST”,”inputs”:[“type”:”hidden”,”name”:”NAME”,”type”:”email”,”name”:”MAIL”,”placeholder”:”Your Email Address”,”required”:true,”type”:”hidden”,”name”:”NEWSLETTER_CODE”,”value”:”XLS-D”,”type”:”hidden”,”name”:”LANG”,”value”:”EN”,”type”:”hidden”,”name”:”SOURCE”,”value”:”60″,”type”:”hidden”,”name”:”COUNTRY”,”type”:”checkbox”,”name”:”CONTACT_OTHER_BRANDS”,”label”:”text”:”Contact me with news and offers from other Future brands”,”type”:”checkbox”,”name”:”CONTACT_PARTNERS”,”label”:”text”:”Receive email from us on behalf of our trusted partners or sponsors”,”type”:”submit”,”value”:”Sign me up”,”required”:true],”endpoint”:”https://newsletter-subscribe.futureplc.com/v2/submission/submit”,”analytics”:[“analyticsType”:”widgetViewed”],”ariaLabels”:;

var triggerHydrate = function()
window.sliceComponents.newsletterForm.hydrate(data, componentContainer);

if (window.lazyObserveElement)
window.lazyObserveElement(componentContainer, triggerHydrate);
else
triggerHydrate();

}).catch(err => console.log(‘Hydration Script has failed for newsletterForm-articleInbodyContent-UG4KJ7zrhxAytcHZQxVzXK Slice’, err));
}).catch(err => console.log(‘Externals script failed to load’, err));

Follow-up studies suggested that the light spectra reflected by Kamo’oalewa was very similar to the spectra reflected by samples brought back to Earth by lunar missions, as well as to meteorites known to come from the moon.

Cheng and his colleagues first calculated what size object and what speed of impact would be necessary to eject a fragment like Kamo’oalewa from the lunar surface, as well as what size crater would be left behind. They figured out that the asteroid could have resulted from a 45-degree impact at about 420,000 mph (18 kilometers per second) and would have left a 6-to-12-mile-wide (10 to 20 km) crater.

There are tens of thousands of craters that size on the moon, but most are ancient, the researchers wrote in their paper. Near-Earth asteroids usually last only about 10 million years, or at most up to 100 million years before they crash into the sun or a planet or get flung out of the solar system entirely. By looking at young craters, the team narrowed down the contenders to a few dozen options.

The researchers focused on Giordano Bruno, which matched the requirements for both size and age. They found that the impact that formed Giordano Bruno could have created as many as three still-extant Kamo’oalewa-like objects. This makes Giordano Bruno crater the most likely source of the asteroid, the researchers concluded.

“It’s like finding out which tree a fallen leaf on the ground came from in a vast forest,” Cheng wrote on X, formerly known as Twitter.

Confirmation will come after the Tianwen-2 mission brings a piece of Kamo’oalewa back to Earth. Scientists already have a sample of what is believed to be ejecta from Giordano Bruno crater in the Luna 24 sample, a bit of moon rock brought back to Earth in a 1976 NASA mission. By comparing the two, researchers could verify Kamo’oalewa’s origin.

Editor’s note: This article’s headline was updated on April 23 at 10 a.m. ET.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

"Hi, It's Me": NASA's Voyager 1 Phones Home From 15 Billion Miles Away – NDTV

Published

 on



<!–

–>

Launched in 1977, Voyager 1 was mankind’s first spacecraft to enter the interstellar medium

Washington, United States:

300x250x1

NASA’s Voyager 1 probe — the most distant man-made object in the universe — is returning usable information to ground control following months of spouting gibberish, the US space agency announced Monday.

The spaceship stopped sending readable data back to Earth on November 14, 2023, even though controllers could tell it was still receiving their commands.

In March, teams working at NASA’s Jet Propulsion Laboratory discovered that a single malfunctioning chip was to blame, and devised a clever coding fix that worked within the tight memory constraints of its 46-year-old computer system.

window._rrCode = window._rrCode || [];_rrCode.push(function() (function(v,d,o,ai)ai=d.createElement(“script”);ai.defer=true;ai.async=true;ai.src=v.location.protocol+o;d.head.appendChild(ai);)(window, document, “//a.vdo.ai/core/v-ndtv/vdo.ai.js”); );

“Voyager 1 spacecraft is returning usable data about the health and status of its onboard engineering systems,” the agency said.

“The next step is to enable the spacecraft to begin returning science data again.”

Launched in 1977, Voyager 1 was mankind’s first spacecraft to enter the interstellar medium, in 2012, and is currently more than 15 billion miles from Earth. Messages sent from Earth take about 22.5 hours to reach the spacecraft.

Its twin, Voyager 2, also left the solar system in 2018.

Both Voyager spacecraft carry “Golden Records” — 12-inch, gold-plated copper disks intended to convey the story of our world to extraterrestrials.

These include a map of our solar system, a piece of uranium that serves as a radioactive clock allowing recipients to date the spaceship’s launch, and symbolic instructions that convey how to play the record.

The contents of the record, selected for NASA by a committee chaired by legendary astronomer Carl Sagan, include encoded images of life on Earth, as well as music and sounds that can be played using an included stylus.

window._rrCode = window._rrCode || [];_rrCode.push(function(){ (function(d,t) var s=d.createElement(t); var s1=d.createElement(t); if (d.getElementById(‘jsw-init’)) return; s.setAttribute(‘id’,’jsw-init’); s.setAttribute(‘src’,’https://www.jiosaavn.com/embed/_s/embed.js?ver=’+Date.now()); s.onload=function()document.getElementById(‘jads’).style.display=’block’;s1.appendChild(d.createTextNode(‘JioSaavnEmbedWidget.init(a:”1″, q:”1″, embed_src:”https://www.jiosaavn.com/embed/playlist/85481065″,”dfp_medium” : “1”,partner_id: “ndtv”);’));d.body.appendChild(s1);; if (document.readyState === ‘complete’) d.body.appendChild(s); else if (document.readyState === ‘loading’) var interval = setInterval(function() if(document.readyState === ‘complete’) d.body.appendChild(s); clearInterval(interval); , 100); else window.onload = function() d.body.appendChild(s); ; )(document,’script’); });

Their power banks are expected to be depleted sometime after 2025. They will then continue to wander the Milky Way, potentially for eternity, in silence.

(Except for the headline, this story has not been edited by NDTV staff and is published from a syndicated feed.)

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

West Antarctica's ice sheet was smaller thousands of years ago – here's why this matters today – The Conversation

Published

 on


As the climate warms and Antarctica’s glaciers and ice sheets melt, the resulting rise in sea level has the potential to displace hundreds of millions of people around the world by the end of this century.

A key uncertainty in how much and how fast the seas will rise lies in whether currently “stable” parts of the West Antarctic Ice Sheet can become “unstable”.

One such region is West Antarctica’s Siple Coast, where rivers of ice flow off the continent and drain into the ocean.

300x250x1
The Ross Ice Shelf holds back the flow of ice streams from West Antarctica’s Siple Coast.
Journal of Geophysical Research, CC BY-SA

This ice flow is slowed down by the Ross Ice Shelf, a floating mass of ice nearly the size of Spain, which holds back the land-based ice. Compared to other ice shelves in West Antarctica, the Ross Ice Shelf has little melting at its base because the ocean below it is very cold.

Although this region has been stable during the past few decades, recent research suggest this was not always the case. Radiocarbon dating of sediments from beneath the ice sheet tells us that it retreated hundreds of kilometres some 7,000 years ago, and then advanced again to its present position within the last 2,000 years.

Figuring out why this happened can help us better predict how the ice sheet will change in the future. In our new research, we test two main hypotheses.




Read more:
What an ocean hidden under Antarctic ice reveals about our planet’s future climate


Testing scenarios

Scientists have considered two possible explanations for this past ice sheet retreat and advance. The first is related to Earth’s crust below the ice sheet.

As an ice sheet shrinks, the change in ice mass causes the Earth’s crust to slowly uplift in response. At the same time, and counterintuitively, the sea level drops near the ice because of a weakening of the gravitational attraction between the ice sheet and the ocean water.

As the ice sheet thinned and retreated since the last ice age, crustal uplift and the fall in sea level in the region may have re-grounded floating ice, causing ice sheet advance.

A graphic showing how Earth's crust uplifts and sea level drops near the ice sheet as it loses mass.
Earth’s crust uplifts and sea level drops near the ice sheet as it loses mass.
AGU, CC BY-SA

The other hypothesis is that the ice sheet behaviour may be due to changes in the ocean. When the surface of the ocean freezes, forming sea ice, it expels salt into the water layers below. This cold briny water is heavier and mixes deep into the ocean, including under the Ross Ice Shelf. This blocks warm ocean currents from melting the ice.

A graphic showing the interaction between cold dense waters and warmer deep flows under the Ross Ice Shelf.
Top: Cold dense shelf water blocks warm circumpolar deep water from melting the ice. Bottom: Warm circumpolar deep water flows under the ice shelf, causing ice melting and retreat.
AGU, CC BY-SA

Seafloor sediments and ice cores tell us that this deep mixing was weaker in the past when the ice sheet was retreating. This means that warm ocean currents may have flowed underneath the ice shelf and melted the ice. Mixing increased when the ice sheet was advancing.

We test these two ideas with computer model simulations of ice sheet flow and Earth’s crustal and sea surface responses to changes in the ice sheet with varying ocean temperature.

Because the rate of crustal uplift depends on the viscosity (stickiness) of the underlying mantle, we ran simulations within ranges estimated for West Antarctica. A stickier mantle means slower crustal uplift as the ice sheet thins.

The simulations that best matched geological records had a stickier mantle and a warmer ocean as the ice sheet retreated. In these simulations, the ice sheet retreats more quickly as the ocean warms.

When the ocean cools, the simulated ice sheet readvances to its present-day position. This means that changes in ocean temperature best explain the past ice sheet behaviour, but the rate of crustal uplift also affects how sensitive the ice sheet is to the ocean.

Three polar tents set up on the Ross Ice Shelf.
Changes in ocean temperature best explain the retreat of West Antarctica’s ice sheet in the past.
Veronika Meduna, CC BY-SA

What this means for climate policy today

Much attention has been paid to recent studies that show glacial melting may be irreversible in some parts of West Antarctica, such as the Amundsen Sea embayment.

In the context of such studies, policy debates hinge on whether we should focus on adapting to rising seas rather than cutting greenhouse gas emissions. If the ice sheet is already melting, are we too late for mitigation?




Read more:
We can still prevent the collapse of the West Antarctic ice sheet – if we act fast to keep future warming in check


Our study suggests it is premature to give up on mitigation.

Global climate models run under high-emissions scenarios show less sea ice formation and deep ocean mixing. This could lead to the same cold-to-warm ocean switch that caused extensive ice sheet retreat thousands of years ago.

For West Antarctica’s Siple Coast, it is better if we prevent this ocean warming from occurring in the first place, which is still possible if we choose a low-emissions future.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending