Connect with us

Science

Lunar Rover Reveals What Lurks 40 Meters Below Surface on Far Side of the Moon – SciTechDaily

Published

 on


The subsurface stratigraphy seen by Yutu-2 radar on the far side of the moon. Credit: CLEP/CRAS/NAOC

A little over a year after landing, China’s spacecraft Chang’E-4 is continuing to unveil secrets from the far side of the Moon. The latest study, published on February 26, 2020, in Science Advances, reveals what lurks below the surface.

Chang’E-4 (CE-4) landed on the eastern floor of the Van Kármán crater, near the Moon’s south pole, on January 3, 2019. The spacecraft immediately deployed its Yutu-2 rover, which uses Lunar Penetrating Radar (LPR) to investigate the underground it roams.

“We found that the signal penetration at the CE-4 site is much greater than that measured by the previous spacecraft, Chang’E-3, at its near-side landing site,” said paper author LI Chunlai, a research professor and deputy director-general of the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC). “The subsurface at the CE-4 landing site is much more transparent to radio waves, and this qualitative observation suggests a totally different geological context for the two landing sites.”

LI and his team used the LPR to send radio signals deep into the surface of the moon, reaching a depth of 40 meters by the high-frequency channel of 500 MHz — more than three times the depth previously reached by CE-3. This data allowed the researchers to develop an approximate image of the subsurface stratigraphy.

“Despite the good quality of the radar image along the rover route at the distance of about 106 meters, the complexity of the spatial distribution and shape of the radar features make identification of the geological structures and events that generated such features quite difficult,” said SU Yan, a corresponding author who is also affiliated with NAOC.

The researchers combined the radar image with tomographic data and quantitative analysis of the subsurface. They concluded that the subsurface is essentially made by highly porous granular materials embedding boulders of different sizes. The content is likely the result of a turbulent early galaxy, when meteors and other space debris frequently struck the Moon. The impact site would eject material to other areas, creating a cratered surface atop a subsurface with varying layers.

The results of the radar data collected by the LPR during the first 2 days of lunar operation provide the first electromagnetic image of the far side subsurface structure and the first ‘ground truth’ of the stratigraphic architecture of an ejecta deposit.

“The results illustrate, in an unprecedented way, the spatial distribution of the different products that contribute to from the ejecta sequence and their geometrical characteristics,” LI said, referring to the material ejected at each impact. “This work shows the extensive use of the LPR could greatly improve our understanding of the history of lunar impact and volcanism and could shed new light on the comprehension of the geological evolution of the Moon’s far side.”

Reference: “The Moon’s farside shallow subsurface structure unveiled by Chang’E-4 Lunar Penetrating Radar” by Chunlai Li, Yan Su, Elena Pettinelli, Shuguo Xing, Chunyu Ding, Jianjun Liu, Xin Ren, Sebastian E. Lauro, Francesco Soldovieri, Xingguo Zeng, Xingye Gao, Wangli Chen, Shun Dai, Dawei Liu, Guangliang Zhang, Wei Zuo, Weibin Wen, Zhoubin Zhang, Xiaoxia Zhang and Hongbo Zhang, 26 February 2020, Science Advances.
DOI: 10.1126/sciadv.aay6898

This work was a collaboration with the Key Laboratory of Lunar and Deep Space Exploration at NAOC, the University of the Chinese Academy of Sciences, the Mathematics and Physics Department of Roma Tre University in Italy, the School of Atmospheric Sciences at the Sun Yat-sen University, and the Insituto per il Rilevamento Elettromagnetico dell’Ambiente IREA-CNR in Italy.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

University of Calgary study examines if Mars could have once supported life – Ottawa.CityNews.ca

Published

 on


Was there ever life on Mars?

Using data from the Curiosity rover, a University of Calgary (UofC) scientist is studying Mars’ geology “for signs the planet could have once supported life.”

It’s part of the NASA-led Mars Science Laboratory mission to examine the rocks on the surface of Mars, as they could offer evidence of life on the Red Planet.

“Our goal is to place constraints on whether Mars was habitable,” Tutolo said. “And if Mars was habitable, then we can think about whether it actually did evolve life.”

The study will be using data collected by Curiosity as it was slowly climbing Mount Sharp 10 years ago to finally land in the centre of the Gale crater.

The rover has analyzed the chemistry and minerology of 1,211 samples of rocks and soil surfaces and sent 2,659 results back to Earth.

Tutolo and his team will do experiments in the laboratory to better understand and interpret the results. They will also conduct field research in British Colombia and run numerical models on a computer.

Study focuses on geological transition of rocks

The team will focus on examining the geological transition of rocks from the oldest layers of sediments to the younger layers “deposited in the crater and which formed Mount Sharp around 3½ billion years” ago.

Tutolo’s study suggests the oldest rocks in the crater are from a lake that is river-fed – “fluviolacustrine environment” –while the younger sediments contain extremely soluble salts – magnesium sulphate salts – such as Epsom salt that can be used for bathing. As these salts are extremely soluble, precipitating them requires all the water to be evaporated.

“We think that it must have been drier on Mars in order to precipitate those minerals. What we’re exploring is how that transition is recorded in the rocks,” Tutolo said.

The research is also taking advantage of the “rare-on-Earth” Basque Lakes near Cache Creek, B.C., that contain magnesium sulphate where the same sulphate minerals found on Mount Sharp on Mars are actively precipitating.

Tutolo is trying to answer this question: “Is there a point where it gets so salty that nothing could live there?”

Since Mars is red as a result of all the iron on its surface where its atmosphere doesn’t have similar levels of oxygen to Earth’s atmosphere, the team is using special tools in the lab to examine sensitive substances in the absence of oxygen, such as an anaerobic chamber that simulates conditions on Mars.

Mars’ geology helps understand Earth’s evolution

Understanding the geological transition on Mars will provide information on whether the planet’s environment would still be habitable in drier and colder environments and whether there’s a potential that life evolved and existed on Mars’ surface at that time. If life did evolve, what evidence can we get from the rocks?

“There was probably a period of time when Mars was getting warm and having water again, and going back and forth (from warmer to colder),” said Tutolo.

He explained that the Earth has experienced ice ages and greenhouse climates as a result of the slight variations in its movement through space, whereas Mars’ movement changes a bit more dramatically, making those cycles more enhanced.

Tutolo also adds that the geological history of early Mars helps understand the history of early Earth as there’s limited access to its geological record from that time.

The limited access to early Earth’s geology is attributed to “plate tectonics whereby, over the eons, the surface gets subsumed into the planet’s mantle as continent-sized slabs of rock collide.”

“But on Mars, all of those rocks have been there since they were deposited, some 3½ billion years or more ago,” Tutolo said. “So we can see those rocks on Mars and understand how life evolved on our planet, going from totally abiotic, or without life at all, to what it is today.”

Adblock test (Why?)



Source link

Continue Reading

Science

Blaxtair Inc. embedded pedestrian detection system – Canadian Occupational Safety

Published

 on


Blaxtair is an embedded pedestrian detection system for industrial vehicles, designed to prevent collisions between vehicles and pedestrians in co-activity zones. It has a smart 3D camera able to distinguish a person from other obstacles in real time and alerts operators in case of danger, without unnecessary alarms.

Blaxtair can be equipped to any industrial vehicle, including but not limited to forklifts and wheel loaders, and is perfect for sites within any industry where co-activity between pedestrians and vehicles poses a safety threat (logistics, warehousing, recycling, mining, construction, etc.)

Blaxtair is made up of 3 main parts:

Adblock test (Why?)



Source link

Continue Reading

Science

Starburst galaxy shines in new 'whirlpool of gold' photo – Space.com

Published

 on


The ESO’s Very Large Telescope captured this view of the starburst galaxy NGC 4303, with gas clouds of ionized oxygen, hydrogen and sulfur shown in blue, green and red, respectively.  (Image credit: ESO/PHANGS)

A mesmerizing new photo captures bright, golden swirling clouds of gas that generate an exceptionally high rate of star formation. 

This stellar nursery, a spiral galaxy known as NGC 4303 or Messier 61, is located 50 million light-years from Earth in the constellation Virgo. NGC 4303 is one of the largest galactic members of the Virgo Cluster — a large, nearby grouping of galaxies.

NGC 4303 is considered a starburst galaxy, where an unusually high amount of stars are born. In turn, studying this type of galaxy helps astronomers to better understand star formation across the universe, according to a statement from the European Southern Observatory (ESO).

Related: Amazing space views from ESO’s Very Large Telescope (photos)

“Stars form when clouds of cold gas collapse,” ESO officials wrote in the statement. “The energetic radiation from newly born stars will heat and ionize the surrounding remaining gas.” 

The photo, taken using the ESO’s Very Large Telescope (VLT) in Chile, shows bright swirling clouds of the ionized gas, appearing as a “whirlpool of gold.” The swirling clouds are like cosmic breadcrumbs, tracing the path of new stars being born, according to the statement.  

Related stories:

Astronomers using the Multi-Unit Spectroscopic Explorer (MUSE) instrument on the VLT observed NGC 4303 at different wavelengths of light to create this “jewel-like” image. Combining their observations revealed a glowing golden whirlpool, speckled with gas clouds of ionized oxygen, hydrogen and sulfur shown in blue, green and red, respectively. 

The recent observations were collected as part of a project called the Physics at High Angular resolution in Nearby Galaxies (PHANGS), which aims to uncover nearby galaxies across all wavelengths of the electromagnetic spectrum, according to the statement. 

Follow Samantha Mathewson @Sam_Ashley13. Follow us on Twitter @Spacedotcom and on Facebook. 

Adblock test (Why?)



Source link

Continue Reading

Trending