adplus-dvertising
Connect with us

Science

Marsquakes: NASA mission discovers that Mars is seismically active, among other surprises – CNN

Published

 on


A NASA mission on Mars has recorded evidence of seismic activity, including 174 seismic events across Mars–and 20 events with a magnitude of three or four.
Marsquakes anyone?
Evidence of seismic activity on Mars that surprised the NASA team is part of a suite of six studies, published Monday in the journals Nature Geoscience and Nature Communications, capturing those first 10 months.
Since landing on Mars in November 2018, NASA’s InSight lander has been performing an extensive doctor’s checkup on the red planet, revealing some results that surprised InSight’s science team.
While the instruments onboard InSight were designed to capture two years worth of data, the seismometer, which measures Marsquakes, returned that intriguing data about Mars in much less time.
“We’re using geophysics to probe the deep interior of Mars. For the first time, we’ve established that Mars is a seismically active planet,” said Bruce Banerdt, InSight’s principal investigator. “That activity is greater than that of the moon, but less than on Earth.”
To be clear, a four magnitude Marsquake doesn’t feel the same as it would on Earth because the events on Mars occur deeper beneath the surface than they do on Earth.
If you were standing directly over the spot when a Marsquake happened, you might sense motion, but it wouldn’t cause any damage, said Suzanne Smrekar, InSight’s deputy principal investigator.
Still, confirming that Mars is seismically active was a major thrill for Insight’s team.
“We’ve been planning this mission for the last ten years, so it’s been a long road to get these results,” said Bruce Banerdt, InSight’s principal investigator.
NASA's InSight mission 'hears' first quake on Mars
Mars doesn’t have tectonic plates, unlike Earth, so its quakes occur through long-term cooling of the planet and other processes, scientists say. The brittle outer layers of the crust on Mars have to fracture to maintain themselves on the surface.
And Mars isn’t a perfect sphere, so the contractions of the crust cause stress and quakes to occur in some areas more than others, Smrekar said.
An analysis of the seismic waves detected by InSight revealed that the upper part of the Martian crust, the top six miles down from the surface, is “pretty broken up.” It’s another testament to the planet’s quake activity and fracturing.
“This is the first mission focused on taking direct geophysical measurements of any planet besides Earth, and it’s given us our first real understanding of Mars’ interior structure and geological processes,” said Nicholas Schmerr, an assistant professor of geology at the University of Maryland and a co-author of the seismicity study. “These data are helping us understand how the planet works, its rate of seismicity, how active it is and where it’s active.”
This is just the beginning of the data and secrets InSight can reveal about Mars, the scientists said.
Since the mission began, InSight has registered 450 Marsquakes in its catalog, coming from all across the planet and likely due to different causes, like landslides.
There has been an increase in small, low-frequency Marsquakes since early in the mission, Banerdt said. But they’ve yet to record any large Marsquakes, which is a goal of the mission.
There is no pattern to the quakes, but the increase in small quakes has them wondering if they are related to the Martian orbit or seasons, atmospheric changes or other unknown factors and phenomenon. For now, they remain odd and mysterious.
The InSight team members are still hopeful for big quakes in the future as well.
NASA's InSight mission is struggling to dig into MarsNASA's InSight mission is struggling to dig into Mars
Two other InSight investigations, including the heat probe taking Mars’ internal temperature and the Rotation and Interior Structure Experiment investigating Mars’ core will provide more data as the mission continues.

A fascinating landing site

Originally deemed a flat parking lot by NASA scientists, InSight’s landing site along the Martian equator is more interesting than previously believed based on ten months of studying it.
A dust devil passed over NASA's lander on MarsA dust devil passed over NASA's lander on Mars
InSight landed in an impact crater in Elysium Planitia. The surface is smooth and sandy with some rocks strewn about. The plains of Elysium Planitia, found along the Martian equator, are between highlands to the south and west and volcanoes to the north and east.
Surprisingly, the scientists discovered that it was the Cerberus Fossae fault lines that revealed the most recently geologically and volcanically active areas on Mars to date. The region is 994 miles to the east and also shows evidence of channels that once carried volcanic flow and liquid water.
The data meant volcanic flows occurred in the area within the last ten million years. Quakes are also registering from that area.
“If you take the thermal model of Mars, you wouldn’t expect such recent volcanism,” Smrekar said. “We wouldn’t expect it to be hot enough inside to be producing magma. This says there is some variability at depth on Mars and the source is not obvious at the surface. Something is allowing localized pockets of volcanism to occur.”

Surprising magnetic fields

Previous missions orbiting Mars have revealed that the planet no longer has a global magnetic field like Earth, yet scientists know it did in the ancient past.
The planet’s protective magnetic field mysteriously disappeared around 4.2 billion years ago as Mars cooled. The sun’s solar wind then stripped away the Martian atmosphere, leaving behind the thin one the planet has today.
NASA's InSight mission tunes in to the strange sounds of MarsNASA's InSight mission tunes in to the strange sounds of Mars
InSight’s magnetometer is the first instrument of its kind on the Martian surface and it unexpectedly detected that there are steady, localized magnetic fields 10 times stronger than predicted at the surface of the landing site.
These the fields are coming from magnetized volcanic rocks beneath Elysium Planitia, which formed when Mars had a global magnetic field. Those magnetic field particles became trapped in the rocks as they cooled, ensnaring the magnetization inside.
Because the subsurface of Mars didn’t heat up again to release that magnetization, the rocks remained the same ever since, said Catherine Johnson, the magnetometer co-investigator.
NASA's InSight mission catches Martian sunrise and sunsetNASA's InSight mission catches Martian sunrise and sunset
“The ground-level data give us a much more sensitive picture of magnetization over smaller areas, and where it’s coming from,” said Johnson. “In addition to showing that the magnetic field at the landing site was ten times stronger than the satellites anticipated, the data implied it was coming from nearby sources.”

A unique weather station

InSight also has a weather station simultaneously recording pressure, temperature and wind; it’s unlike any meterological suite ever used on Mars. Understanding how the atmosphere behaves at the Martian surface is key to understanding Mars and its ancient past.
Combined with the magnetometer, the scientists were able to detect 10,000 pressure vortexes moving through the landing site. They believe the vortexes could be the iconic Martian dust devils that spin up columns of dust along the surface, said Philippe Lognonne, principal investigator of the magnetometer.
Get a bird's-eye view of NASA's missions on MarsGet a bird's-eye view of NASA's missions on Mars

Trouble with the heat probe

Unfortunately, the heat probe that was deployed last year immediately ran into difficulty as it hit tough, clod-like dirt material 35 centimeters beneath the surface. The probe is supposed to hammer 9 to 16 feet beneath the surface to test how Mars internal temperature varies.
But the self-hammering probe only works if there’s friction in the soil, otherwise it bounces in place. The probe team will try another tactic, using the lander’s robotic arm to push down on the probe in hopes of continuing the investigation, Banerdt said.
Although they have more data than conclusions, the scientists likened their first 10 months to geophysicists trying to investigate Earth in the early 1900s, using the best tools they had to understand plate tectonics and earthquakes.
“This is an entire new world of processes for us, learning how to categorize these signals,” Banerdt said. “It’s still a very mysterious situation and we’re In the wild west of understanding what’s going on. We anticipate that within the next year, we can use this data to probe the deepest structures of Mars.”

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

Science

Marine plankton could act as alert in mass extinction event: UVic researcher – Langley Advance Times

Published

 on


A University of Victoria micropaleontologist found that marine plankton may act as an early alert system before a mass extinction occurs.

With help from collaborators at the University of Bristol and Harvard, Andy Fraass’ newest paper in the Nature journal shows that after an analysis of fossil records showed that plankton community structures change before a mass extinction event.

“One of the major findings of the paper was how communities respond to climate events in the past depends on the previous climate,” Fraass said in a news release. “That means that we need to spend a lot more effort understanding recent communities, prior to industrialization. We need to work out what community structure looked like before human-caused climate change, and what has happened since, to do a better job at predicting what will happen in the future.”

300x250x1

According to the release, the fossil record is the most complete and extensive archive of biological changes available to science and by applying advanced computational analyses to the archive, researchers were able to detail the global community structure of the oceans dating back millions of years.

A key finding of the study was that during the “early eocene climatic optimum,” a geological era with sustained high global temperatures equivalent to today’s worst case global warming scenarios, marine plankton communities moved to higher latitudes and only the most specialized plankton remained near the equator, suggesting that the tropical temperatures prevented higher amounts of biodiversity.

“Considering that three billion people live in the tropics, the lack of biodiversity at higher temperatures is not great news,” paper co-leader Adam Woodhouse said in the release.

Next, the team plans to apply similar research methods to other marine plankton groups.

Read More: Global study, UVic researcher analyze how mammals responded during pandemic

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Scientists Say They Have Found New Evidence Of An Unknown Planet… – 2oceansvibe News

Published

 on


In the new work, scientists looked at a set of trans-Neptunian objects, or TNOs, which is the technical term for those objects that sit out at the edge of the solar system, beyond Neptune

The new work looked at those objects that have their movement made unstable because they interact with the orbit of Neptune. That instability meant they were harder to understand, so typically astronomers looking at a possible Planet Nine have avoided using them in their analysis.

Researchers instead looked towards those objects and tried to understand their movements. And, Dr Bogytin claimed, the best explanation is that they result from another, undiscovered planet.

300x250x1

The team carried out a host of simulations to understand how those objects’ orbits were affected by a variety of things, including the giant planets around them such as Neptune, the “Galactic tide” that comes from the Milky Way, and passing stars.

The best explanation was from the model that included Planet 9, however, Dr Bogytin said. They noted that there were other explanations for the behaviour of those objects – including the suggestion that other planets once influenced their orbit, but have since been removed – but claim that the theory of Planet 9 remains the best explanation.

A better understanding of the existence or not of Planet 9 will come when the Vera C Rubin Observatory is turned on, the authors note. The observatory is currently being built in Chile, and when it is turned on it will be able to scan the sky to understand the behaviour of those distant objects.

Planet Nine is theorised to have a mass about 10 times that of Earth and orbit about 20 times farther from the Sun on average than Neptune. It may take between 10,000 and 20,000 Earth years to make one full orbit around the Sun.

You may be tempted to ask how an entire planet could ‘hide’ in our solar system when we have zooming capabilities such as the new iPhone 15 has, but consider this: If Earth was the size of a marble, the edge of our solar system would be 11 kilometres away. That’s a lot of space to hide a planet.

[source:independent]

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Dragonfly: NASA Just Confirmed The Most Exciting Space Mission Of Your Lifetime – Forbes

Published

 on


NASA has confirmed that its exciting Dragonfly mission, which will fly a drone-like craft around Saturn’s largest moon, Titan, will cost $3.35 billion and launch in July 2028.

Titan is the only other world in the solar system other than Earth that has weather and liquid on the surface. It has an atmosphere, rain, lakes, oceans, shorelines, valleys, mountain ridges, mesas and dunes—and possibly the building blocks of life itself. It’s been described as both a utopia and as deranged because of its weird chemistry.

Set to reach Titan in 2034, the Dragonfly mission will last for two years once its lander arrives on the surface. During the mission, a rotorcraft will fly to a new location every Titan day (16 Earth days) to take samples of the giant moon’s prebiotic chemistry. Here’s what else it will do:

300x250x1
  • Search for chemical biosignatures, past or present, from water-based life to that which might use liquid hydrocarbons.
  • Investigate the moon’s active methane cycle.
  • Explore the prebiotic chemistry in the atmosphere and on the surface.

Spectacular Mission

“Dragonfly is a spectacular science mission with broad community interest, and we are excited to take the next steps on this mission,” said Nicky Fox, associate administrator of the Science Mission Directorate at NASA Headquarters in Washington. “Exploring Titan will push the boundaries of what we can do with rotorcraft outside of Earth.”

It comes in the wake of the Mars Helicopter, nicknamed Ingenuity, which flew 72 times between April 2021 and its final flight in January 2023 despite only being expected to make up to five experimental test flights over 30 days. It just made its final downlink of data this week.

Dense Atmosphere

However, Titan is a completely different environment to Mars. Titan has a dense atmosphere on Titan, which will make buoyancy simple. Gravity on Titan is just 14% of the Earth’s. It sees just 1% of the sunlight received by Earth.

function loadConnatixScript(document)
if (!window.cnxel)
window.cnxel = ;
window.cnxel.cmd = [];
var iframe = document.createElement(‘iframe’);
iframe.style.display = ‘none’;
iframe.onload = function()
var iframeDoc = iframe.contentWindow.document;
var script = iframeDoc.createElement(‘script’);
script.src = ‘//cd.elements.video/player.js’ + ‘?cid=’ + ’62cec241-7d09-4462-afc2-f72f8d8ef40a’;
script.setAttribute(‘defer’, ‘1’);
script.setAttribute(‘type’, ‘text/javascript’);
iframeDoc.body.appendChild(script);
;
document.head.appendChild(iframe);

loadConnatixScript(document);

(function()
function createUniqueId()
return ‘xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx’.replace(/[xy]/g, function(c) 0x8);
return v.toString(16);
);

const randId = createUniqueId();
document.getElementsByClassName(‘fbs-cnx’)[0].setAttribute(‘id’, randId);
document.getElementById(randId).removeAttribute(‘class’);
(new Image()).src = ‘https://capi.elements.video/tr/si?token=’ + ’44f947fb-a5ce-41f1-a4fc-78dcf31c262a’ + ‘&cid=’ + ’62cec241-7d09-4462-afc2-f72f8d8ef40a’;
cnxel.cmd.push(function ()
cnxel(
playerId: ’44f947fb-a5ce-41f1-a4fc-78dcf31c262a’,
playlistId: ‘aff7f449-8e5d-4c43-8dca-16dfb7dc05b9’,
).render(randId);
);
)();

The atmosphere is 98% nitrogen and 2% methane. Its seas and lakes are not water but liquid ethane and methane. The latter is gas in Titan’s atmosphere, but on its surface, it exists as a liquid in rain, snow, lakes, and ice on its surface.

COVID-Affected

Dragonfly was a victim of the pandemic. Slated to cost $1 billion when it was selected in 2019, it was meant to launch in 2026 and arrive in 2034 after an eight-year cruise phase. However, after delays due to COVID, NASA decided to compensate for the inevitable delayed launch by funding a heavy-lift launch vehicle to massively shorten the mission’s cruise phase.

The end result is that Dragonfly will take off two years later but arrive on schedule.

Previous Visit

Dragonfly won’t be the first time a robotic probe has visited Titan. As part of NASA’s landmark Cassini mission to Saturn between 2004 and 2017, a small probe called Huygens was despatched into Titan’s clouds on January 14, 2005. The resulting timelapse movie of its 2.5 hours descent—which heralded humanity’s first-ever (and only) views of Titan’s surface—is a must-see for space fans. It landed in an area of rounded blocks of ice, but on the way down, it saw ancient dry shorelines reminiscent of Earth as well as rivers of methane.

The announcement by NASA makes July 2028 a month worth circling for space fans, with a long-duration total solar eclipse set for July 22, 2028, in Australia and New Zealand.

Wishing you clear skies and wide eyes.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending