Metal clouds found on the hot Jupiter WASP-121 b using the Hubble Space Telescope - News | Institute for Research on Exoplanets | Canada News Media
Connect with us

Science

Metal clouds found on the hot Jupiter WASP-121 b using the Hubble Space Telescope – News | Institute for Research on Exoplanets

Published

 on


Artistic representation of the exoplanet WASP-121 b. This planet always presents the same face to its star. This day side is thus continuously illuminated, and very hot, while the other, the night side, is constantly exposed to the coldness of space. Credit: Engine House VFX / MPIA.

Astronomers explore the unusual atmospheric conditions of a hot exoplanet

An international group of astronomers which includes Jake Taylor, a Postdoctoral Researcher at the Institute for Research on Exoplanets, has made the first detailed measurement of atmospheric nightside conditions of a tidally locked hot Jupiter. By including measurements from the dayside hemisphere, they determined how water changes physical states when moving between the hemispheres of the exoplanet WASP-121 b. While airborne metals and minerals evaporate on the hot dayside, the cooler night side features metal clouds and rain made of liquid gems. This study, published on February 21st in Nature Astronomy, is a big step in deciphering the global cycles of matter and energy in the atmospheres of exoplanets.

The first discovery of an exoplanet orbiting a Sun-like star more than 25 years ago introduced a new and exotic class of planets, hot Jupiters: Jupiter-like giant gas planets on close orbits around their parent stars, separated by only a few stellar diameters. Due to their proximity, the irradiation from the star heats the planet to several hundred to a few thousand degrees Celsius. Of the almost 5000 known exoplanets, more than 300 are such hot Jupiters.

Using the Hubble Space Telescope, the international team led by Thomas Mikal-Evans from the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany, investigated the atmospheric properties of the hot Jupiter WASP-121 b. Astronomers discovered this exoplanet in 2015. It is located in the constellation Puppis at a distance of 855 light-years from Earth. WASP-121 b’s mass is about 20% greater than that of Jupiter, while it has a diameter that is nearly twice as large.

Despite the discovery of thousands of exoplanets, we’ve only been able to study the atmospheres of a small fraction due to the challenging nature of the observations,” Mikal-Evans points out. “So far, most of these measurements have provided limited information, such as basic details on the chemical composition or average temperature in specific subregions of the atmosphere.”

The first exploration of an exoplanet’s nightside environment

The new observations allowed the astronomers to obtain the most detailed insight yet into the conditions of an exoplanet nightside hemisphere. Like all hot Jupiters, WASP-121 b’s rotation is tidally locked to its orbit around its parent star. Hence, one 30-hour orbit around the star requires the same amount of time as the planet needs to rotate once on its axis. As a result, the hemisphere pointing towards the star – the dayside – always suffers the roasting hot stellar surface. Likewise, the cooler night side constantly faces the cold and dark space. By merging the data from the dayside and nightside hemispheres, the team’s analysis leads to the first elaborate view of how an exoplanet atmosphere functions as a global system.

Metal clouds and rain made of liquid gems

Liquid ruby and sapphire could be raining into the atmosphere of the gas giant exoplanet WAPS-121 b. Credit: Wikimedia Commons (ruby, sapphire).

Instead of water clouds such as those on Earth, clouds on WASP-121 b mainly consist of metals such as iron, magnesium, chromium and vanadium. Previous observations have revealed the spectral signals of these metals as gases on the hot dayside. The new Hubble data indicate that temperatures drop low enough for the metals to condense into clouds on the nightside. Eastward flowing winds that carry the water vapour across the nightside would also blow these metal clouds back around to the dayside, where they again evaporate.

Strangely, aluminium and titanium were not among the gases detected in the atmosphere of WASP-121 b. A likely explanation for this is that these metals have condensed and rained down into deeper layers of the atmosphere, not accessible to observations. This rain would be unlike any known in the Solar System. For instance, aluminium condenses with oxygen to form the compound corundum. With impurities of chromium, iron, titanium or vanadium, we know it as ruby or sapphire. Liquid gems could therefore be raining on the nightside hemisphere of WASP-121 b.

Prospects with the James Webb Space Telescope

Jake Taylor, NEAT Postdoctoral Fellow at the Institute for Research on Exoplanets (iREx) and co-author of the study, specialises in analysing space telescope data that reveal the atmosphere of exoplanets. He contributed to establishing the composition and structure of WASP-121 b’s atmosphere using Hubble Wide Field Camera 3 data. 

Jake Taylor, NEAT Postdoctoral Fellow at the Institute for Research on Exoplanets (iREx), is a co-author of the study.

“WASP-121 b will be studied with the James Webb Space Telescope soon,” explains Dr.Taylor. “These Hubble observations give us a first insight into what the NEAT GTO observation for WASP-121 b will tell us about the extreme weather conditions on this planet.” 

Jake joined iREx at the Université de Montréal in the Summer of 2021 specifically to work on NEAT, the James Webb Space Telescope observing program that uses Canadian Guaranteed Time Observations (GTO) to study a variety of exoplanets’ atmospheres, including that of WASP-121 b. 

By covering wavelengths beyond Hubble’s range, the Webb Telescope’s observations will allow the team to determine the amount of carbon in the atmosphere, which could hold clues about how and where WASP-121 b formed in the protoplanetary disk. The measurements will even be precise enough to learn about the wind speeds at different altitudes inside the atmosphere.

Everyone at iREx and in the international team is eager to learn more about WASP-121 b with the Webb Telescope!

About this study

Diurnal variations in the stratosphere of the ultrahot giant exoplanet WASP-121b ” by Mikal-Evans et al. was published on February 21th, 2022, in Nature Astronomy. In addition to Thomas Mikal-Evans (MPIA, Germany; MIT Kavli Institute, USA) and Jake Taylor (iREx, UdeM, Canada; University of Oxford, UK), the team includes 10 co-authors from the USA, UK and India. 

Source

Adapted from a MPIA Press Release by

Dr. Markus Nielbock
Max-Planck-Institut für Astronomie Presse- und Öffentlichkeitsarbeit
MPIA-Campus Königstuhl 17 D-69117 Heidelberg
Tel. +49(0)6221 528-134 Mobil +49(0)15678 747326, nielbock@mpia.de 

Media Contact
Marie-Eve Naud
EPO Coordinator, Institute for Research on Exoplanets
Université de Montréal, Montréal, Canada
514-279-3222, marie-eve.naud@umontreal.ca

Nathalie Ouellette
Coordinator, Institute for Research on Exoplanets
Université de Montréal, Montréal, Canada
613-531-1762, nathalie.ouellette.2@umontreal.ca

Scientific Contacts
Jake Taylor
NEAT Postdoctoral Researcher
Université de Montréal, Montréal, Canada
jake.taylor@umontreal.ca 

Additional links
Scientific paper (Nature)
Scientific paper (open source version)
MPIA Press Release

Adblock test (Why?)



Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending

Exit mobile version