Connect with us

Science

NASA Delays SpaceX Crew-3 Launch to the International Space Station – SciTechDaily

Published

 on


The SpaceX Crew Dragon Endeavour is pictured during its approach to the International Space Station on April 24, 2021. Credit: NASA

<span aria-describedby="tt" class="glossaryLink" data-cmtooltip="

NASA
Established in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. It’s vision is "To discover and expand knowledge for the benefit of humanity."

“>NASA and <span aria-describedby="tt" class="glossaryLink" data-cmtooltip="

SpaceX
Commonly known as SpaceX, Space Exploration Technologies Corp. is a private American aerospace manufacturer and space transportation services company that was founded by Elon Musk in 2002. Headquartered in Hawthorne, California, the company designs, manufactures, and launches advanced rockets and spacecraft.

“>SpaceX now are targeting 1:10 a.m. EDT Wednesday, November 3, for the agency’s Crew-3 launch to the International Space Station due to a large storm system meandering across the Ohio Valley and through northeastern United States this weekend, elevating winds and waves in the Atlantic Ocean along the Crew Dragon flight path for the October 31 launch attempt.

Weather conditions along the ascent corridor are expected to improve for a November 3 launch attempt, and the 45th Weather Squadron forecast predicts an 80% chance of favorable weather conditions at the launch site.

NASA’s SpaceX Crew-3 Astronauts

NASA’s SpaceX Crew-3 astronauts participate in a countdown dress rehearsal at the agency’s Kennedy Space Center in Florida on October 28, 2021, to prepare for the upcoming Crew-3 launch. The astronauts are at Launch Pad 39A with the Falcon 9 and Crew Dragon behind them during the rehearsal. Credit: SpaceX

NASA astronauts Raja Chari, mission commander, Tom Marshburn, pilot, and Kayla Barron, mission specialist and ESA (European Space Agency) astronaut Matthias Maurer, also a mission specialist, will launch on the SpaceX Crew Dragon spacecraft and Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

Crew-3 astronauts are scheduled for a long-duration science mission aboard the orbiting laboratory, living and working as part of what is expected to be a seven-member crew.

Launch November 3 would have Crew-3 arriving at the space station later the same day about 11 p.m. Wednesday, November 3, for a short handover with the astronauts that flew to the station as part of the agency’s SpaceX Crew-2 mission.

SpaceX Falcon 9 Rocket With Crew Dragon Spacecraft Crew-3 Mission

A SpaceX Falcon 9 rocket with the company’s Crew Dragon spacecraft onboard is seen at sunset on the launch pad at Launch Complex 39A as preparations continue for the Crew-3 mission, Wednesday, October 27, 2021, at NASA’s Kennedy Space Center in Florida. Credit: NASA/Joel Kowsky

Crew-2 NASA astronauts Shane Kimbrough and Megan McArthur, <span aria-describedby="tt" class="glossaryLink" data-cmtooltip="

JAXA
Formed in 2003, the Japan Aerospace Exploration Agency (JAXA) was born through the merger of three institutions, namely the Institute of Space and Astronautical Science (ISAS), the National Aerospace Laboratory of Japan (NAL) and the National Space Development Agency of Japan (NASDA). JAXA performs various activities related to aerospace, from basic research in the aerospace field to development and utilization and is responsible for research, technology development, and launch of satellites into orbit, and is involved in advanced missions such as asteroid exploration and possible human exploration of the Moon.

“>JAXA (Japan Aerospace Exploration Agency) astronaut Akihiko Hoshide, and ESA astronaut Thomas Pesquet are currently targeting return in early November. Crew-3 astronauts are set to return in late April 2022.

NASA’s SpaceX Crew-3 astronauts will remain at crew quarters at Kennedy until their launch. They will spend time with their families and receive technical and weather briefings in the next few days.

The Crew Dragon Endurance is scheduled to dock to the space station at 11 p.m. Wednesday, November 3. Launch and docking coverage will air live on NASA Television, the NASA app, and the agency’s website.

NASA SpaceX Crew-3 Astronauts

NASA’s SpaceX Crew-3 astronauts participate in a countdown dress rehearsal at the agency’s Kennedy Space Center in Florida on October 28, 2021, to prepare for the upcoming Crew-3 launch. From left are Matthias Maurer, with the European Space Agency, and NASA astronauts Tom Marshburn, Raja Chari, Crew-3 commander, and Kayla Barron. Credit: SpaceX

The Crew-3 flight will carry NASA astronauts Raja Chari, mission commander; Tom Marshburn, pilot; and Kayla Barron, mission specialist; as well as ESA (European Space Agency) astronaut Matthias Maurer, who will serve as a mission specialist, to the space station for a six-month science mission, staying aboard until late April 2022.

The Crew-2 mission with NASA astronauts Shane Kimbrough and Megan McArthur, JAXA (Japan Aerospace Exploration Agency) astronaut Akihiko Hoshide, and ESA (European Space Agency) astronaut Thomas Pesquet will now target their undocking from the space station for no earlier than Sunday, November 7, to return to Earth.

NASA’s SpaceX Crew-3 mission coverage is as follows (all times Eastern):

Tuesday, November 2

  • 8:45 p.m. – NASA Television launch coverage begins. NASA will have continuous coverage, including launch, docking, hatch open, and welcome ceremony.

Wednesday, November 3

  • 1:10 a.m. – Launch
  • NASA TV coverage continues through docking, arrival, and the welcome ceremony. In lieu of a postlaunch news conference, NASA leadership will provide comments during the broadcast.
  • 11 p.m. – Docking

Thursday, November 4

  • 12:35 a.m. – Hatch Opening
  • 1:10 a.m. – Welcoming Ceremony

Adblock test (Why?)



Source link

Continue Reading

Science

BEYOND LOCAL: NASA launches spacecraft to test asteroid defense concept – BayToday

Published

 on


LOS ANGELES (AP) — NASA launched a spacecraft Tuesday night on a mission to smash into an asteroid and test whether it would be possible to knock a speeding space rock off course if one were to threaten Earth.

The DART spacecraft, short for Double Asteroid Redirection Test, lifted off from Vandenberg Space Force Base atop a SpaceX Falcon 9 rocket in a $330 million project with echoes of the Bruce Willis movie “Armageddon.”

If all goes well, the boxy, 1,200-pound (540-kilogram) craft will slam head-on into Dimorphos, an asteroid 525 feet (160 meters) across, at 15,000 mph (24,139 kph) next September.

“This isn’t going to destroy the asteroid. It’s just going to give it a small nudge,” said mission official Nancy Chabot of Johns Hopkins Applied Physics Laboratory, which is managing the project.

Dimorphos orbits a much larger asteroid called Didymos. The pair are no danger to Earth but offer scientists a better way to measure the effectiveness of a collision than a single asteroid flying through space.

Dimorphos completes one orbit of Didymos every 11 hours, 55 minutes. DART’s goal is a crash that will slow Dimorphos down and cause it to fall closer toward the bigger asteroid, shaving 10 minutes off its orbit.

The change in the orbital period will be measured by telescopes on Earth. The minimum change for the mission to be considered a success is 73 seconds.

The DART technique could prove useful for altering the course of an asteroid years or decades before it bears down on Earth with the potential for catastrophe.

A small nudge “would add up to a big change in its future position, and then the asteroid and the Earth wouldn’t be on a collision course,” Chabot said.

Scientists constantly search for asteroids and plot their courses to determine whether they could hit the planet.

“Although there isn’t a currently known asteroid that’s on an impact course with the Earth, we do know that there is a large population of near-Earth asteroids out there,” said Lindley Johnson, planetary defense officer at NASA. “The key to planetary defense is finding them well before they are an impact threat.”

DART will take 10 months to reach the asteroid pair. The collision will occur about 6.8 million miles (11 million kilometers) from Earth.

Ten days beforehand, DART will release a tiny observation spacecraft supplied by the Italian space agency that will follow it.

DART will stream video until it is destroyed on impact. Three minutes later, the trailing craft will make images of the impact site and material that is ejected.

John Antczak, The Associated Press

Adblock test (Why?)



Source link

Continue Reading

Science

Doing Photon Upconversion A Solid: Crystals That Convert Light To More Useful Wavelengths – Eurasia Review

Published

 on


Solid-solution organic crystals have been brought into the quest for superior photon upconversion materials, which transform presently wasted long-wavelength light into more useful shorter wavelength light. Scientists from Tokyo Institute of Technology revisited a materials approach previously deemed lackluster—using a molecule originally developed for organic LEDs—achieving outstanding performance and efficiency. Their findings pave the way for many novel photonic technologies, such as better solar cells and photocatalysts for hydrogen and hydrocarbon productions.

Light is a powerful source of energy that can, if leveraged correctly, be used to drive stubborn chemical reactions, generate electricity, and run optoelectronic devices. However, in most applications, not all the wavelengths of light can be used. This is because the energy that each photon carries is inversely proportional to its wavelength, and chemical and physical processes are triggered by light only when the energy provided by individual photons exceeds a certain threshold.

This means that devices like solar cells cannot benefit from all the color contained in sunlight, as it comprises a mixture of photons with both high and low energies. Scientists worldwide are actively exploring materials to realize photon upconversion (PUC), by which photons with lower energies (longer wavelengths) are captured and re-emitted as photons with higher energies (shorter wavelengths). One promising way to realize this is through triplet-triplet annihilation (TTA). This process requires the combination of a sensitizer material and an annihilator material. The sensitizer absorbs low energy photons (long-wavelength light) and transfers its excited energy to the annihilator, which emits higher energy photons (light of shorter wavelength) as a result of TTA (Figure 1).

Finding good solid materials for PUC has proven challenging for a long time. Although liquid samples can achieve relatively high PUC efficiency, working with liquids, especially those comprising organic solvents, is inherently risky and cumbersome in many applications. However, previous trials to create PUC solids generally suffered from poor crystal quality and small crystal domains, which lead to short travelling distances of triplet excited states and thus, low PUC efficiency. Additionally, in most previous solid PUC samples, stability under continuous photoirradiation was not tested and experimental data were often acquired in inert gas atmospheres. Hence, the low efficiency and insufficient materials stability had been of concern for a long time.

Now, in a recent study led by Associate Professor Yoichi Murakami from Tokyo Tech, Japan, a team of researchers found the answer to this challenge. Published in Materials Horizon, their paper (open access) describes how they focused on van der Waals crystals, a classical materials class that has not been considered for the quest of high-efficiency PUC solids. After discovering that 9-(2-naphthyl)-10-[4-(1-naphthyl)phenyl]anthracene (ANNP), a hydrocarbon molecule originally developed for blue organic LEDs, was an excellent annihilator for embodying their concept, they tried mixing it with platinum octaethylporphyrin (PtOEP), a staple sensitizer that absorbs green light.

The team found that aggregation of the sensitizer molecules could be completely avoided by utilizing the crystalline phase of a van der Waals solid solution with a sufficiently low proportion of PtOEP to ANNP (around 1:50000). They proceeded to thoroughly characterize the obtained crystals and found some insight into why using the ANNP annihilator prevented the aggregation of the sensitizer when other existing annihilators had failed to do so in previous studies. Moreover, the solid crystals the team produced were highly stable and exhibited outstanding performance, as Dr. Murakami remarks: “The results of our experiments using simulated sunlight indicate that solar concentration optics such as lenses are no longer needed to efficiently upconvert terrestrial sunlight.”

Overall, this study brings van der Waals crystals back into the game of PUC as an effective way of creating outstanding solid materials using versatile hydrocarbon annihilators. “The proof-of-concept we presented in our paper is a major technical leap forward in the quest for high-performance PUC solids, which will open up diverse photonics technologies in the future,” concludes Dr. Murakami. Let us hope further research in this topic allows us to efficiently transform light into its most useful forms.

Adblock test (Why?)



Source link

Continue Reading

Science

New Russian module docks with International Space Station – CGTN

Published

 on


A Soyuz rocket carrying the Progress cargo spacecraft and the Prichal node module lifts off from a launch pad at the Baikonur Cosmodrome, Kazakhstan, November 24, 2021. /CFP

A Soyuz rocket carrying the Progress cargo spacecraft and the Prichal node module lifts off from a launch pad at the Baikonur Cosmodrome, Kazakhstan, November 24, 2021. /CFP

A Russian cargo craft carrying a new docking module successfully hooked up with the International Space Station Friday after a two-day space journey.

The new spherical module, named Prichal (Pier), docked with the orbiting outpost at 6:19 p.m. Moscow time (1519 GMT). It has six docking ports and will allow potential future expansion of the Russian segment of the station.

The module has moored to the docking port of the new Russian Nauka (Science) laboratory module.

On Wednesday, a Soyuz rocket took off from the Russian launch facility in Baikonur, Kazakhstan, carrying the Progress cargo ship with Prichal attached to it. After entering space, the cargo ship with the module went into orbit.

Progress is also delivering 700 kilograms of various cargoes to the space station and is expected to undock from the station on December 22.

The first Soyuz spacecraft is expected to dock at the new module on March 18, 2022, with a crew of three cosmonauts: Oleg Artemyev, Denis Matveev and Sergei Korsakov.

Earlier this week, the Russian crew on the station started training for the module’s arrival, simulating the use of manual controls in case the automatic docking system failed.

The space outpost is currently operated by NASA astronauts Raja Chari, Thomas Marshburn, Kayla Barron, and Mark Vande Hei; Russian cosmonauts Anton Shkaplerov and Pyotr Dubrov; and Matthias Maurer of the European Space Agency.

Source(s): AP

Adblock test (Why?)



Source link

Continue Reading

Trending