Science
NASA Explores a Winter Wonderland on Mars – Otherworldly Holiday Scene With Cube-Shaped Snow
|
The HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter captured these images of sand dunes covered by frost just after winter solstice. The frost here is a mixture of carbon dioxide (dry) ice and water ice and will disappear in a few months when spring arrives. Credit: NASA/JPL-Caltech/University of Arizona
Cube-shaped snow, icy landscapes, and frost are all part of the Red Planet’s coldest season.
When winter comes to <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”
” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>Mars, the surface is transformed into a truly otherworldly holiday scene. Snow, ice, and frost accompany the season’s sub-zero temperatures. Some of the coldest of these occur at the planet’s poles, where it gets as low as minus 190 degrees <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”
” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>Fahrenheit (minus 123 degrees <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”
” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>Celsius).
Cold as it is, don’t expect snow drifts worthy of the Rocky Mountains. No region of Mars gets more than a few feet of snow, most of which falls over extremely flat areas. And the Red Planet’s elliptical orbit means it takes many more months for winter to come around: a single Mars year is around two Earth years.
Snow falls and ice and frost form on Mars, too. <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”
Two Kinds of Snow
Martian snow comes in two varieties: water ice and carbon dioxide, or dry ice. Because Martian air is so thin and the temperatures so cold, water-ice snow sublimates, or becomes a gas, before it even touches the ground. Dry-ice snow actually does reach the ground.
“Enough falls that you could snowshoe across it,” said Sylvain Piqueux, a Mars scientist at NASA’s Jet Propulsion Laboratory in Southern California whose research includes a variety of winter phenomena. “If you were looking for skiing, though, you’d have to go into a crater or cliffside, where snow could build up on a sloped surface.”
HiRISE captured these “megadunes,” also called barchans. Carbon dioxide frost and ice have formed over the dunes during the winter; as this starts to sublimate during spring, the darker-colored dune sand is revealed. Credit: NASA/JPL-Caltech/University of Arizona
How We Know It Snows
Snow occurs only at the coldest extremes of Mars: at the poles, under cloud cover, and at night. Cameras on orbiting spacecraft can’t see through those clouds, and surface missions can’t survive in the extreme cold. As a result, no images of falling snow have ever been captured. But scientists know it happens, thanks to a few special science instruments.
NASA’s Mars Reconnaissance Orbiter can peer through cloud cover using its Mars Climate Sounder instrument, which detects light in wavelengths imperceptible to the human eye. That ability has allowed scientists to detect carbon dioxide snow falling to the ground. And in 2008, NASA sent the Phoenix lander within 1,000 miles (about 1,600 kilometers) of Mars’ north pole, where it used a laser instrument to detect water-ice snow falling to the surface.
Cubic Snowflakes
Because of how water molecules bond together when they freeze, snowflakes on Earth have six sides. The same principle applies to all crystals: The way in which atoms arrange themselves determines a crystal’s shape. In the case of carbon dioxide, molecules in dry ice always bond in forms of four when frozen.
“Because carbon dioxide ice has a symmetry of four, we know dry-ice snowflakes would be cube-shaped,” Piqueux said. “Thanks to the Mars Climate Sounder, we can tell these snowflakes would be smaller than the width of a human hair.”
The HiRISE camera captured this image of the edge of a crater in the middle of winter. The south-facing slope of the crater, which receives less sunlight, has formed patchy, bright frost, seen in blue in this enhanced-color image. Credit: NASA/JPL-Caltech/University of Arizona
Jack Frost Nipping at Your Rover
Water and carbon dioxide can each form frost on Mars, and both types of frost appear far more widely across the planet than snow does. The Viking landers saw water frost when they studied Mars in the 1970s, while NASA’s Odyssey orbiter has observed frost forming and sublimating away in the morning Sun.
HiRISE captured this spring scene, when water ice frozen in the soil had split the ground into polygons. Translucent carbon dioxide ice allows sunlight to shine through and heat gases that escape through vents, releasing fans of darker material onto the surface (shown as blue in this enhanced-color image). Credit: NASA/JPL-Caltech/University of Arizona
Winter’s Wondrous End
Perhaps the most fabulous discovery comes at the end of winter, when all the ice that built up begins to “thaw” and sublimate into the atmosphere. As it does so, this ice takes on bizarre and beautiful shapes that have reminded scientists of spiders, Dalmatian spots, fried eggs, and Swiss cheese.
This “thawing” also causes geysers to erupt: Translucent ice allows sunlight to heat up gas underneath it, and that gas eventually bursts out, sending fans of dust onto the surface. Scientists have actually begun to study these fans as a way to learn more about which way Martian winds are blowing.
Science
Asteroid 2023 BU just passed a few thousand kilometres from Earth. Here’s why that’s exciting – The Tribune India

Perth (Australia), January 28
There are hundreds of millions of asteroids in our Solar System, which means new asteroids are discovered quite frequently. It also means close encounters between asteroids and Earth are fairly common.
Some of these close encounters end up with the asteroid impacting Earth, occasionally with severe consequences.
A recently discovered asteroid, named 2023 BU, has made the news because today it passed very close to Earth.
Discovered on January 21 by amateur astronomer Gennadiy Borisov in Crimea, 2023 BU passed only about 3,600 km from the surface of Earth (near the southern tip of South America) six days later on January 27.
That distance is just slightly farther than the distance between Perth and Sydney and is only about 1 per cent the distance between Earth and our Moon.
The asteroid also passed through the region of space that contains a significant proportion of the human-made satellites orbiting Earth.
All this makes 2023 BU the fourth-closest known asteroid encounter with Earth, ignoring those that have impacted the planet or our atmosphere.
How does 2023 BU rate as an asteroid and a threat?
2023 BU is unremarkable, other than that it passed so close to Earth. The diameter of the asteroid is estimated to be just 4–8 metres, which is on the small end of the range of asteroid sizes.
There are likely hundreds of millions of such objects in our Solar System, and it is possible 2023 BU has come close to Earth many times before over the millennia. Until now, we have been oblivious to the fact.
In context, on average a 4-metre-diameter asteroid will impact Earth every year and an 8-metre-diameter asteroid every five years or so
Asteroids of this size pose little risk to life on Earth when they hit because they largely break up in the atmosphere. They produce spectacular fireballs, and some of the asteroids may make it to the ground as meteorites.
Now that 2023 BU has been discovered, its orbit around the Sun can be estimated and future visits to Earth predicted. It is estimated there is a 1 in 10,000 chance 2023 BU will impact Earth sometime between 2077 and 2123.
So, we have little to fear from 2023 BU or any of the many millions of similar objects in the Solar System.
Asteroids need to be greater than 25 metres in diameter to pose any significant risk to life in a collision with Earth; to challenge the existence of civilisation, they’d need to be at least a kilometre in diameter.
It is estimated there are fewer than 1,000 such asteroids in the Solar System and could impact Earth every 5,00,000 years. We know about more than 95 per cent of these objects.
Will there be more close asteroid passes?
2023 BU was the fourth closest pass by an asteroid ever recorded. The three closer passes were by very small asteroids discovered in 2020 and 2021 (2021 UA, 2020 QG and 2020 VT).
Asteroid 2023 BU and countless other asteroids have passed very close to Earth during the nearly five billion years of the Solar System’s existence, and this situation will continue into the future.
What has changed in recent years is our ability to detect asteroids of this size, such that any threats can be characterised. That an object roughly five metres in size can be detected many thousands of kilometres away by a very dedicated amateur astronomer shows that the technology for making significant astronomical discoveries is within reach of the general public. This is very exciting.
Amateurs and professionals can together continue to discover and categorise objects, so threat analyses can be done. Another very exciting recent development came last year, by the Double Asteroid Redirection Test (DART) mission, which successfully collided a spacecraft into an asteroid and changed its direction.
DART makes plausible the concept of redirecting an asteroid away from a collision course with Earth if a threat analysis identifies a serious risk with enough warning. (The Conversation)
Science
An SUV-sized asteroid zoom by Earth in close shave flyby in this time-lapse video
|
Asteroid 2023 BU zipped past Earth Thursday night (Jan. 26) to the delight of amateur astronomers worldwide. For skywatchers without access to a telescope or those who had their view hampered by bad weather, luckily the Italy-based Virtual Telescope Project was there to observe the event and livestream the whole thing for free.
The Virtual Telescope is a robotic telescope operated by Italian amateur astronomer Gianluca Masi near Rome, Italy. As 2023 BU hurtled toward Earth, the telescope was able to track the rock through a gap in the clouds when it was about 13,670 miles (22,000 kilometers) from the closest point on Earth’s surface (about the altitude of the GPS navigation satellite constellation) and 22,990 miles (37,000 km) from the Virtual Telescope.
Masi, who shared an hour-long webcast of the observations on the Virtual Telescope website, wasn’t able to capture the closest approach as clouds rolled in, however. Nonetheless, the Virtual Telescope Project was able to get a good look at the car-sized rock, seen in time-lapse above.
The rock, discovered less than a week ago on Saturday (Jan. 21), passed above the southern tip of South America at 7:27 p.m. EST on Thursday Jan. 26 (0027 GMT on Jan. 27), at a distance of only 2,240 miles (3,600 km) at its closest point to Earth’s surface.
This close approach makes 2023 BU the fourth nearest asteroid ever observed from Earth, with the exception of five space rocks that were detected before diving into Earth’s atmosphere.
Only 11.5 to 28 feet wide (3.5 to 8.5 meters), 2023 BU posed no danger to the planet. If the trajectories of the two bodies had intersected, the asteroid would mostly have burned up in the atmosphere with only small fragments possibly falling to the ground as meteorites.
In the videos and images shared by Masi, the asteroid is seen as a small bright dot in the center of the frame, while the longer, brighter lines are the surrounding stars. In reality, of course, it was the asteroid that was moving with respect to Earth, traveling at a speed of 21,000 mph (33,800 km/h) with respect to Earth. As Masi’s computerized telescope tracked its positionthe rock appeared stationary in the images while rendering the stars as these moving streaks.
Related stories:
The gravitational kick that 2023 BU received during its encounter with Earth will alter the shape of its orbit around the sun. Previously, the space rock followed a rather circular orbit, completing one lap around the sun in 359 days. From now on, BU 2023 will travel through the inner solar system on a more elliptical path, venturing half way toward Mars at the farthest point of its orbit. This alteration will add 66 days to BU 2023’s orbital period.
The asteroid was discovered by famed Crimea-based astronomer and astrophotographer Gennadiy Borisov, the same man who in 2018 found the first interstellar comet, which now bears his name, Borisov.




Science
Green comet zooming our way, last visited 50,000 years ago


|
A comet is streaking back our way after 50,000 years.
The dirty snowball last visited during Neanderthal times, according to NASA. It will come within 26 million miles (42 million kilometers) of Earth Wednesday before speeding away again, unlikely to return for millions of years.
So do look up, contrary to the title of the killer-comet movie “Don’t Look Up.”
Discovered less than a year ago, this harmless green comet already is visible in the northern night sky with binoculars and small telescopes, and possibly the naked eye in the darkest corners of the Northern Hemisphere. It’s expected to brighten as it draws closer and rises higher over the horizon through the end of January, best seen in the predawn hours. By Feb. 10, it will be near Mars, a good landmark.
Skygazers in the Southern Hemisphere will have to wait until next month for a glimpse.
While plenty of comets have graced the sky over the past year, “this one seems probably a little bit bigger and therefore a little bit brighter and it’s coming a little bit closer to the Earth’s orbit,” said NASA’s comet and asteroid-tracking guru, Paul Chodas.
Green from all the carbon in the gas cloud, or coma, surrounding the nucleus, this long-period comet was discovered last March by astronomers using the Zwicky Transient Facility, a wide field camera at Caltech’s Palomar Observatory. That explains its official, cumbersome name: comet C/2022 E3 (ZTF).
On Wednesday, it will hurtle between the orbits of Earth and Mars at a relative speed of 128,500 mph (207,000 kilometers). Its nucleus is thought to be about a mile (1.6 kilometers) across, with its tails extending millions of miles (kilometers).
The comet isn’t expected to be nearly as bright as Neowise in 2020, or Hale-Bopp and Hyakutake in the mid to late 1990s.


But “it will be bright by virtue of its close Earth passage … which allows scientists to do more experiments and the public to be able to see a beautiful comet,” University of Hawaii astronomer Karen Meech said in an email.
Scientists are confident in their orbital calculations putting the comet’s last swing through the solar system‘s planetary neighborhood at 50,000 years ago. But they don’t know how close it came to Earth or whether it was even visible to the Neanderthals, said Chodas, director of the Center for Near Earth Object Studies at NASA’s Jet Propulsion Laboratory in California.
When it returns, though, is tougher to judge.
Every time the comet skirts the sun and planets, their gravitational tugs alter the iceball’s path ever so slightly, leading to major course changes over time. Another wild card: jets of dust and gas streaming off the comet as it heats up near the sun.
“We don’t really know exactly how much they are pushing this comet around,” Chodas said.
The comet—a time capsule from the emerging solar system 4.5 billion years ago—came from what’s known as the Oort Cloud well beyond Pluto. This deep-freeze haven for comets is believed to stretch more than one-quarter of the way to the next star.
While comet ZTF originated in our solar system, we can’t be sure it will stay there, Chodas said. If it gets booted out of the solar system, it will never return, he added.
Don’t fret if you miss it.
“In the comet business, you just wait for the next one because there are dozens of these,” Chodas said. “And the next one might be bigger, might be brighter, might be closer.”
© 2023 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed without permission.
Citation:
Green comet zooming our way, last visited 50,000 years ago (2023, January 27)
retrieved 27 January 2023
from https://phys.org/news/2023-01-green-comet-years.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.




-
Business22 hours ago
Being Charismatic Greatly Benefits Your Job Search
-
Tech15 hours ago
Oppo Reno8 T 4G Sunset Orange model poses for the camera, revealing key specs – GSMArena.com news – GSMArena.com
-
Investment19 hours ago
Opinion: Now is the time to invest in post-secondary education – Edmonton Journal
-
Art22 hours ago
Wish you could set fire to the last 3 years? A huge flaming art installation is coming to Toronto – CBC.ca
-
Economy15 hours ago
US inflation and consumer spending cooled in December – Al Jazeera English
-
Real eState5 hours ago
Housing market: Jason Oppenheim warns of an 'armageddon' in the real estate industry – Yahoo Finance
-
Real eState15 hours ago
Real estate agents say they can't imagine working without ChatGPT now – CNN
-
Media9 hours ago
Trump’s Evolution on Truth Social: More QAnon, More Extremes – The New York Times