adplus-dvertising
Connect with us

Science

NASA scientists say a magnetic anomaly above our planet is going to split in half – CTV News

Published

 on


TORONTO —
NASA researchers have been tracking a strange new development in an already strange phenomenon: the dent in Earth’s magnetic field appears to be splitting in half.

Yes, the Earth’s magnetic field has a weak spot, right over South America and the southern Atlantic Ocean, called the South Atlantic Anomaly (SAA).

Currently, this anomaly does not impact us on the ground in any way. But when satellites pass through the anomaly, they have to account for extra radiation — and studying this so-called “dent” allows scientists to learn more about Earth’s magnetic fields and plan for future space missions and satellites.

300x250x1

A visualization released on Monday of the changing magnetic fields between 2015 and 2025 shows the anomaly splitting off into two distinct regions in the next few years.

It also shows that the distortions in the magnetic field aren’t just occurring above the planet — they are happening deep inside of Earth as well, at the boundary between the mantle and the molten core.

SO WHAT IS GOING ON?

Earth’s magnetic fields are far more complex than they appear. Although they function somewhat like a bar magnet (a dipole), with North and South poles, the magnetic field itself can fluctuate and change, as it results from the constant churning of Earth’s liquid iron core, which generates electrical currents.

According to the U.S. Space Weather Prediction Center, run by the National Oceanic and Atmospheric Administration (NOAA), the region of space in a bubble around Earth where the “dominant magnetic field is the magnetic field of Earth, rather than the magnetic field of interplanetary space” is called the “magnetosphere.”

The magnetosphere is where solar winds interact with Earth’s magnetic fields. The pressure of these winds are what forces the magnetic field to curve around the dayside of Earth, and expand out into space in a tail from the nightside of the Earth, like water moving around a rock in a stream. Because the Earth is constantly turning, presenting a new side of the Earth towards the Sun, the magnetosphere is always changing shape.

Energy coming off of the Sun can sometimes interact with the magnetosphere in ways that create what is called “space weather events.” These events, such as geomagnetic storms, can threaten human technology and communications around the Earth, as well as astronauts in orbit. Satellites, GPS, electric power grids and even the flights of commercial airlines can all be disturbed by a stormy day in space.

Charged particles that make it through the first layer of the magnetosphere can get trapped in something called the Van Allen Belts, which are belts of radiation around the Earth. These belts are far enough away from the Earth’s surface to prevent us from feeling the effects of this radiation, but where they interact with the SAA, more particles can get closer to Earth.

THE ANOMALY

If Earth’s magnetic field is like a blanket around the planet, protecting us from charged particles from the Sun, the SAA is a place where the material has worn thin.

According to NOAA, the SAA allows “cosmic rays and charged particles to reach lower into the atmosphere.” They note that the anomaly can change in intensity, and can affect satellites because it is full of “high energy particles that can penetrate the skin of the spacecraft and cause upsets in spacecraft electronics.”

Satellites hit by high-energy protons can short-circuit or have issues communicating with the ground.

The International Space Station has also experienced issues when passing through the SAA. While the humans on board are well protected from radiation, instruments that collect information from the outside of the ISS can be reset by the trip through the anomaly, or register blips in their data.

Weijia Kuang, a geophysicist and mathematician in Goddard’s Geodesy and Geophysics Laboratory, said in an article about the SAA splitting on NASA’s website that what we are currently seeing with the SAA could be “a consequence of weakening dominance of the dipole field in the region.

“More specifically, a localized field with reversed polarity grows strongly in the SAA region, thus making the field intensity very weak, weaker than that of the surrounding regions.”

Terry Sabaka, a geophysicist at NASA’s Goddard Space Flight Center, is one of the scientists tracking the SAA, along with Kuang.

Using data from the European Space Agency’s Swarm constellation, which is a trio of identical satellites, as well as previous information from various agencies, scientists are aiming to forecast changes in the magnetic field and the SAA into the future.

“Even though the SAA is slow-moving, it is going through some change in morphology, so it’s also important that we keep observing it by having continued missions,” Sabaka said in the article on NASA’s website. “Because that’s what helps us make models and predictions.”

Scientists are hoping that by tracking the SAA’s split, and the geomagnetic forces surrounding the Earth, they can prepare for issues that may arise in the future for satellites and astronauts.

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

Science

NASA's Voyager 1 resumes sending engineering updates to Earth – Phys.org

Published

 on


NASA’s Voyager 1 spacecraft is depicted in this artist’s concept traveling through interstellar space, or the space between stars, which it entered in 2012. Credit: NASA/JPL-Caltech

For the first time since November, NASA’s Voyager 1 spacecraft is returning usable data about the health and status of its onboard engineering systems. The next step is to enable the spacecraft to begin returning science data again. The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars).

Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the was still receiving their commands and otherwise operating normally. In March, the Voyager engineering team at NASA’s Jet Propulsion Laboratory in Southern California confirmed that the issue was tied to one of the spacecraft’s three onboard computers, called the flight data subsystem (FDS). The FDS is responsible for packaging the science and engineering data before it’s sent to Earth.

300x250x1

The team discovered that a responsible for storing a portion of the FDS memory—including some of the FDS computer’s software code—isn’t working. The loss of that code rendered the science and engineering data unusable. Unable to repair the chip, the team decided to place the affected code elsewhere in the FDS memory. But no single location is large enough to hold the section of code in its entirety.

So they devised a plan to divide affected the code into sections and store those sections in different places in the FDS. To make this plan work, they also needed to adjust those code sections to ensure, for example, that they all still function as a whole. Any references to the location of that code in other parts of the FDS memory needed to be updated as well.

NASA’s Voyager 1 resumes sending engineering updates to Earth
After receiving data about the health and status of Voyager 1 for the first time in five months, members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20. Credit: NASA/JPL-Caltech

The team started by singling out the responsible for packaging the spacecraft’s engineering data. They sent it to its new location in the FDS memory on April 18. A radio signal takes about 22.5 hours to reach Voyager 1, which is over 15 billion miles (24 billion kilometers) from Earth, and another 22.5 hours for a signal to come back to Earth. When the mission flight team heard back from the spacecraft on April 20, they saw that the modification had worked: For the first time in five months, they have been able to check the health and status of the spacecraft.

During the coming weeks, the team will relocate and adjust the other affected portions of the FDS software. These include the portions that will start returning science data.

Voyager 2 continues to operate normally. Launched over 46 years ago, the twin Voyager spacecraft are the longest-running and most distant spacecraft in history. Before the start of their interstellar exploration, both probes flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune.

Provided by
NASA

Citation:
NASA’s Voyager 1 resumes sending engineering updates to Earth (2024, April 22)
retrieved 22 April 2024
from https://phys.org/news/2024-04-nasa-voyager-resumes-earth.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Osoyoos commuters invited to celebrate Earth Day with the Leg Day challenge – Oliver/Osoyoos News – Castanet.net

Published

 on


Osoyoos commuters can celebrate Earth Day as the Town joins in on a national commuter challenge known as “Leg Day,” entering a chance to win sustainable transportation prizes.

The challenge, from Earth Day Canada, is to record 10 sustainable commutes taken without a car.

300x250x1

“Cars are one of the biggest contributors to gas emissions in Canada,” reads an Earth Day Canada statement. “That’s why, Earth Day Canada is launching the national Earth Day is Leg Day Challenge.”

So far, over 42.000 people have participated in the Leg Day challenge.

Participants could win an iGo electric bike, public transportation for a year, or a gym membership.

The Town of Osoyoos put out a message Monday promoting joining the national program.

For more information on the Leg Day challenge click here.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Early bird may dodge verticillium woes in potatoes – Manitobe Co-Operator

Published

 on


Verticillium wilt is a problem for a lot of crops in Manitoba, including canola, sunflowers and alfalfa.

Read Also

Field stress can translate to potato skin flaws.

In potatoes, the fungus Verticillium dahlia is the main cause of potato early die complex. In a 2021 interview with the Co-operator, Mario Tenuta, University of Manitoba soil scientist and main investigator with the Canadian Potato Early Dying Network, suggested the condition can cause yield loss of five to 20 per cent. Other research from the U.S. puts that number as high as 50 per cent.

It also becomes a marketing issue when stunted spuds fall short of processor preferences.

Verticillium in potatoes can significantly reduce yield and, being soil-borne, is difficult to manage.

Preliminary research results suggest earlier planting of risk-prone fields could reduce losses, in part due to colder soil temperatures earlier in the season.

Unlike other potato fungal issues that can be addressed with foliar fungicide, verticillium hides in the soil.

“Commonly we use soil fumigation and that’s very expensive,” said Julie Pasche, plant pathologist with North Dakota State University.

There are options. In 2017, labels expanded for the fungicide Aprovia, Syngenta’s broad-spectrum answer for leaf spots or powdery mildews in various horticulture crops. In-furrow verticillium suppression for potatoes was added to the label.

There has also been interest in biofumigation. Mustard has been tagged as a potential companion crop for potatoes, thanks to its production of glucosinolate and the pathogen- and pest-inhibiting substance isothiocyanate.

Last fall, producers heard that a new, sterile mustard variety specifically designed for biofumigation had been cleared for sale in Canada, although seed supplies for 2024 are expected to be slim. AAC Guard was specifically noted for its effectiveness against verticillium wilt.

Timing is everything

Researchers at NDSU want to study the advantage of natural plant growth patterns.

“What we’d like to look at are other things we can do differently, like verticillium fertility management and water management, as well as some other areas and how they may be affected by planting date,” Pasche said.

The idea is to find a chink in the fungus’s life cycle.

Verticillium infects roots in the spring. From there, it colonizes the plant, moving through the root vascular tissue and into the stem. This is the cause of in-season vegetative wilting, Pasche noted.

As it progresses, plant cells die, leaving behind tell-tale black dots on dead tissue. Magnification of those dots reveals what look like dark bunches of grapes — tiny spheres containing melanized hyphae, a resting form of the fungus called microsclerotia.

The dark colour comes from melanin, the same pigment found in human skin. This pigmentation protects the microsclerotia from ultraviolet light.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending