Connect with us

Science

NASA's Parker Solar Probe is the first spacecraft to ever enter the sun's atmosphere – CBS News

Published

 on


NASA’s Parker Solar Probe has survived a three year journey and a roughly 2 million degree Fahrenheit environment to do what was previously thought impossible: enter the sun’s atmosphere.

The Parker Solar Probe launched in 2018. It has now circled the sun more than eight times and “touched” the sun for the first time when it entered the corona — the low density, high temperature upper atmosphere of the sun — in April 2021, according to data published in Physical Review Letters on Tuesday. 

The probe’s mission was to learn more about solar winds, which consist of streams of particles that influence the earth as well as magnetic zig-zags called switchbacks, and the sun’s surface temperature.

The achievement was the result of a massive collaboration between NASA and Harvard University and the Smithsonian’s Center for Astrophysics. The Center for Astrophysics constructed the Solar Probe Cup, a part onboard the spacecraft that collected sample particles from the sun’s atmosphere to confirm that it officially entered the corona. 

“Parker Solar Probe ‘touching the Sun’ is a monumental moment for solar science and a truly remarkable feat,” Thomas Zurbuchen, the associate administrator for the Science Mission Directorate at NASA Headquarters in Washington, said in a NASA press release. “Not only does this milestone provide us with deeper insights into our Sun’s evolution and its impacts on our solar system, but everything we learn about our own star also teaches us more about stars in the rest of the universe.”

During its travels to the sun, the probe discovered the solar winds’ switchbacks became more frequent close to the sun. But researchers didn’t know how these switchbacks were formed. Once they arrived at the sun’s corona, researchers discovered that the switchbacks likely formed in magnetic funnels near the sun’s surface, but how they form remains unknown. 

Researchers are hopeful that they will learn more about how and where solar winds are formed as well. In Tuesday’s publishings, researchers hypothesized that parts of solar winds may be forming in the sun’s magnetic funnels.

If these questions are answered, researchers may be able to understand why the corona is millions of degrees hotter than the sun’s surface.

“My instinct is, as we go deeper into the mission and lower and closer to the Sun, we’re going to learn more about how magnetic funnels are connected to the switchbacks,” Stuart Bale, professor at the University of California, Berkeley said. “And hopefully resolve the question of what process makes them.”

The probe also found that the surface of the corona isn’t smooth, as some researchers originally predicted. When the probe approached the sun’s atmosphere, it went in and out of it several times, leading researchers to conclude it has “spikes and valleys” that “wrinkle the surface.” 

Solar atmosphere studies are “a really important region to get into because we think all sorts of physics potentially turn on,” Justin Kasper, lead author and deputy chief technology officer at BWX Technologies, Inc. and a University of Michigan professor said. “And now we’re getting into that region and hopefully going to start seeing some of these physics and behaviors.”  

Next, the solar probe will spiral closer to the sun and hopefully reach a distance of around 4 million miles from the surface. The probe will reenter the atmosphere in January 2022. 

Adblock test (Why?)



Source link

Continue Reading

Science

Consistent Asteroid Collisions Rock Previous Thinking on Mars Impact Craters – SciTechDaily

Published

 on


This image provides a perspective view of a triple crater in the ancient Martian highlands. Credit: ESA/DLR/FU Berlin

New Curtin University research has confirmed the frequency of asteroid collisions that formed impact craters on <span aria-describedby="tt" class="glossaryLink" data-cmtooltip="

Mars
Mars is the second smallest planet in our solar system and the fourth planet from the sun. Iron oxide is prevalent in Mars’ surface resulting in its reddish color and its nickname "The Red Planet." Mars’ name comes from the Roman god of war.

“>Mars has been consistent over the past 600 million years.

New Curtin University research has confirmed the frequency of asteroid collisions that formed impact craters on Mars has been consistent over the past 600 million years.

The study, published in Earth and Planetary Science Letters, analyzed the formation of more than 500 large Martian craters using a crater detection algorithm previously developed at Curtin, which automatically counts the visible impact craters from a high-resolution image.

Despite previous studies suggesting spikes in the frequency of asteroid collisions, lead researcher Dr. Anthony Lagain, from Curtin’s School of Earth and Planetary Sciences, said his research had found they did not vary much at all for many millions of years.

Impact Craters on Mars

One of the 521 large craters that has been dated in the study. The formation age of this 40km crater has been estimated using the number of small craters accumulated around it since the impact occurred. A portion of these small craters are shown on the right panel and all of them have been detected using the algorithm. In total, more than 1.2 million craters were used to date the Martian craters. Credit: Curtin University

Dr. Lagain said counting impact craters on a planetary surface was the only way to accurately date geological events, such as canyons, rivers, and volcanoes, and to predict when, and how big, future collisions would be.

“On Earth, the erosion of plate tectonics erases the history of our planet. Studying planetary bodies of our Solar System that still conserve their early geological history, such as Mars, helps us to understand the evolution of our planet,” Dr. Lagain said.

“The crater detection algorithm provides us with a thorough understanding of the formation of impact craters including their size and quantity, and the timing and frequency of the asteroid collisions that made them.”

Past studies had suggested that there was a spike in the timing and frequency of asteroid collisions due to the production of debris, Dr. Lagain said.

“When big bodies smash into each other, they break into pieces or debris, which is thought to have an effect on the creation of impact craters,” Dr. Lagain said.

“Our study shows it is unlikely that debris resulted in any changes to the formation of impact craters on planetary surfaces.”

Co-author and leader of the team that created the algorithm, Professor Gretchen Benedix, said the algorithm could also be adapted to work on other planetary surfaces, including the Moon.

“The formation of thousands of lunar craters can now be dated automatically, and their formation frequency analyzed at a higher resolution to investigate their evolution,” Professor Benedix said.

“This will provide us with valuable information that could have future practical applications in nature preservation and agriculture, such as the detection of bushfires and classifying land use.”

Reference: “Has the impact flux of small and large asteroids varied through time on Mars, the Earth and the Moon?” by Anthony Lagain, Mikhail Kreslavsky, David Baratoux, Yebo Liu, Hadrien Devillepoix, Philip Bland, Gretchen K. Benedix, Luc S. Doucet and Konstantinos Servis, 7 January 2022, Earth and Planetary Science Letters.
DOI: 10.1016/j.epsl.2021.117362

Adblock test (Why?)



Source link

Continue Reading

Science

B.C. researchers uncover mechanism that keeps large whales from drowning while feeding on krill – CTV News Vancouver

Published

 on


Vancouver –

New research from the University of British Columbia is shedding light on the ways that whales feed underwater without flooding their airways with seawater.

The research, published this month in Current Biology, shows that lunge-feeding whales – the type that lunge and gulp at large schools of krill – have a special mechanism in the back of their mouths that stops water from entering their lungs when eating.

“It’s kind of like when a human’s uvula moves backwards to block our nasal passages, and our windpipe closes up while swallowing food,” says lead author Dr. Kelsey Gil, a postdoctoral researcher in the department of zoology, in a statement.

Specifically, a fleshy bulb acts as a plug, to close off upper airways, while a larynx closes to block lower airways.

The humpback whale and the blue whale are both lunge-feeders, but the scientists’ research focused on fin whales, thanks in part to being able to travel to Iceland in 2018 and examine carcass remains at a commercial whaling station.

“We haven’t seen this protective mechanism in any other animals, or in the literature. A lot of our knowledge about whales and dolphins comes from toothed whales, which have completely separated respiratory tracts, so similar assumptions have been made about lunge-feeding whales,” Gil said.

Lunge-feeders are impressive, Gil said, because sometimes the amount of food and water they consume is larger than their bodies. After snapping at krill, and while blocking the water from their airways, the whales then drain the ocean water through their baleen, leaving behind the tasty fish.

The study’s senior author Dr. Robert Shadwick, a professor in the UBC department of zoology, says the efficiency of the whales’ feeding is a key factor in their evolution.

“Bulk filter-feeding on krill swarms is highly efficient and the only way to provide the massive amount of energy needed to support such a large body size. This would not be possible without the special anatomical features we have described,” he said in a statement. 

Adblock test (Why?)



Source link

Continue Reading

Science

Study confirmed the frequency of asteroid collisions that formed Mars craters – Tech Explorist

Published

 on


Mapping and counting impact craters are the most commonly used technique to derive detailed insights on geological events and processes shaping the surface of terrestrial planets. Scientists from Curtin University have used a crater detection algorithm to analyze the formation of more than 500 large Martian craters.

The algorithm they used automatically counts the visible impact craters from a high-resolution image. Scientists found that the frequency of asteroid collisions that formed Mars craters has been consistent for over 600 million years.

Lead scientist Dr. Anthony Lagain from Curtin’s School of Earth and Planetary Sciences said, “Despite previous studies suggesting spikes in the frequency of asteroid collisions, this research had found they did not vary much at all for many millions of years.”

“Counting impact craters on a planetary surface was the only way to accurately date geological events, such as canyons, rivers, and volcanoes, and to predict when, and how big, future collisions would be.”

“On Earth, the erosion of plate tectonics erases the history of our planet. Studying planetary bodies of our Solar System that still conserve their early geological history, such as Mars, helps us to understand the evolution of our planet.”

“The crater detection algorithm provides us with a thorough understanding of the formation of impact craters, including their size and quantity, and the timing and frequency of the asteroid collisions that made them.”

“Past studies had suggested that there was a spike in the timing and frequency of asteroid collisions due to the production of debris.”

“When big bodies smash into each other, they break into pieces of debris, which is thought to affect the creation of impact craters.”

“Our study shows it is unlikely that debris resulted in any changes to the formation of impact craters on planetary surfaces.”

Co-author and leader of the team that created the algorithm, Professor Gretchen Benedix, said“the algorithm could also be adapted to work on other planetary surfaces, including the Moon.”

“The formation of thousands of lunar craters can now be dated automatically, and their formation frequency analyzed at a higher resolution to investigate their evolution.”

“This will provide us with valuable information that could have future practical applications in nature preservation and agriculture, such as the detection of bushfires and classifying land use.”

Journal Reference:

  1. Anthony Lagain et al. Has the impact flux of small and large asteroids varied through time on Mars, the Earth, and the Moon? DOI: 10.1016/j.epsl.2021.117362

Adblock test (Why?)



Source link

Continue Reading

Trending