adplus-dvertising
Connect with us

Science

Neptune – Worldatlas.com

Published

 on


Orbiting the sun at a distance of 2.8 billion miles (4.5 billion kilometers), Neptune is the fourth-largest planet by diameter and third-largest by mass, having a diameter of 30,598 miles (49,244 kilometers). Strangely, it is slightly more massive than Uranus, which is strange given that the mass of the gas giants should increase the closer you get to the sun. This has led astronomers to predict that Neptune may have formed much closer to the sun than Uranus did. Still, gravitational perturbations from the other gas giants caused its orbit to migrate outwards. In the 174 years since astronomers found Neptune, it has only been visited by a spacecraft on a single occasion, when Voyager 2 passed by the giant planet in 1989. Voyager 2 revealed a truly remarkable and complex world. Neptune is a warmer planet despite it being further from the sun than Uranus. The core of Neptune is predicted to reach temperatures of (7,000 degrees Celsius), while its upper layers reach temperatures as low as minus 328 degrees Fahrenheit (minus 200 degrees Celsius). This gigantic difference in temperature between Neptune’s outer and inner layers is believed to cause Neptune’s dynamic weather system. Voyager 2 measured the fastest known winds in the solar system, reaching speeds of 1,500 miles per hour (2,400 km/h).

Although classified as gas giants, both Uranus and Neptune have enough unique characteristics that they belong to their own classification: ice giants. Unlike Jupiter and Saturn, Uranus and Neptune contain a much higher abundance of ices, such as water, ammonia, and methane. Like Jupiter and Saturn, Neptune is composed mainly of hydrogen and helium. However, hydrogen and helium only make up a fraction of Neptune’s density. Various ices determine the density of Neptune, making it both a gas giant and an ice giant

Observational History 

An Image of Neptune Taken by Voyager 2, NASA

Neptune was the latest planet to be discovered in our solar system and, interestingly, the only one to be found using mathematics rather than a telescope. The discovery of Neptune was tied directly to the discovery of Uranus. In 1781, the astronomer William Herschel discovered the planet Uranus. After the discovery of Uranus, astronomers were puzzled over its orbit. The orbit of Uranus was tilted so that the mass of Uranus and the gravitational pull of the sun could not explain. In 1821, Alexis Bouvard predicted that the orbit of Uranus could be explained if another planet was orbiting the sun outside of Uranus’s orbit. He was able to predict the orbit of this eighth planet, and in 1846, astronomers pointed their telescopes to the sky and found Neptune, just as the math had predicted. Given Neptune’s distance from us, it is not an easy world to study. For over a hundred years, virtually nothing was known about Neptune. Astronomers would not get their first up-close view of Neptune until 1989 when the Voyager 2 spacecraft completed the first-ever flyby of Neptune. To date, the Voyager 2 flyby has been the only mission to Neptune, and it raised far more questions than it answered. Neptune is one of the most mysterious worlds in the solar system, and our knowledge of it is definitely lacking. However, as telescopes have become more powerful, astronomers have observed Neptune in more detail than in the past. Still, most of what is known about Neptune comes from the Voyager 2 flyby. 

300x250x1

Orbit And Rotation

solar system
The Planets in Our Solar System and their Orbits

The average distance between Neptune and the sun is 2.8 billion miles (4.5 billion kilometers). It takes Neptune nearly 170 Earth years to complete one orbit around the sun at such a vast distance. Since its discovery, Neptune has only completed one full sun rotation. Like all the other planets, Neptune orbits the sun in an ellipse, meaning that the distance between the sun and Neptune changes through the planet’s orbit. Neptune is roughly 2.76 billion miles (4.45 billion kilometers) away from the sun during its closest approach. Neptune is 2.81 billion miles (4.53 billion kilometers) away from the sun during its furthest approach. 

Neptune’s orbit and location in the solar system have a profound impact on the solar system’s outer regions. Just beyond the orbit of Neptune is the Kuiper Belt, a vast collection of comets and other forms of planetary debris. Short-period comets primarily come from the Kuiper Belt, and it is the gravitational pull of Neptune that generally pulls them on a trajectory towards the inner solar system. 

As a gas giant, Neptune has an interesting rotation. The axis tilt of Neptune is only 28 degrees, which is quite similar to Earth’s 23 degrees. As a result, Neptune experiences seasonal changes similar to Earth’s, the significant difference being their length. Since it takes Neptune 170 years to orbit the sun, its seasons generally last up to 40 Earth years. Since Neptune is primarily composed of gas, Neptune’s atmosphere rotates at a different rate than the planet itself. The actual rotation of a gas giant is generally determined by the rotation of the planet’s magnetic field. Neptune takes roughly 16 hours for the planet to rotate once about its axis. Along Neptune’s equator, it takes the atmosphere 18 years to rotate around the planet. In the polar regions, it takes 12 hours. This difference in rotation is one factor contributing to Neptune’s high wind speeds. 

Neptune’s Atmosphere 

neptune atmosphere
The Blue-Green Atmosphere of Neptune as Captured by Voyager 2, NASA

The atmosphere of Neptune is similar to that of Uranus and the other gas giants. Neptune’s atmosphere is about 80% hydrogen and 19% helium in its upper layers. The remaining 1% is composed of various ices, the most notable of which is methane. On Uranus, methane in the upper atmosphere absorbs incoming red light and scatters blue light, causing Uranus to be cyan-green. Neptune contains a similar amount of methane as Uranus, which is one reason why Neptune is blue. However, based on what is currently known, Neptune should be the same color as Uranus, yet Neptune is a much deeper blue than its planetary neighbor. As of yet, scientists do not know all the factors that contribute to Neptune’s color. 

The atmosphere of Neptune can be divided into two central regions: the troposphere and the stratosphere. The troposphere composes the lower regions of Neptune’s atmosphere, while the stratosphere composes the upper areas. In the troposphere, temperatures increase with altitude. In the stratosphere, the opposite occurs, and temperatures decrease with altitude. Temperatures between the troposphere and stratosphere vary wildly. In the troposphere, temperatures average around 32 degrees Fahrenheit (Zero degrees Celsius), while temperatures in the upper stratosphere drop as low as minus 328 degrees Fahrenheit (minus 200 degrees Celsius). The troposphere is characterized by an abundance of clouds that can form at higher temperatures. Clouds in the troposphere are primarily made of methane, ammonia, and hydrogen sulfide. The troposphere is also where most of Neptune’s weather occurs.

Neptune is home to the fastest recorded winds in the solar system. Voyager 2 recorded wind speeds of over 1,500 miles per hour (2,400 km/h), which happens to be faster than the speed of sound on Earth. If Neptune’s winds were to occur in Earth’s atmosphere, they would be supersonic winds. Interestingly, since air is the medium that sound travels through, the sound speed depends on the density of air. Air density on Neptune is far higher than on Earth, so winds do not exceed the speed of sound on Neptune. 

Internal Structure Of Neptune

neptune
The True Colors of Neptunes Surface and Cloud, Captured by Voyager 2, NASA

Neptune’s atmosphere composes an estimated 10% to 20% of the distance to Neptune’s core and only about 5% of the planet’s total mass. Below the atmosphere is a world, unlike anything we are familiar with on Earth. At the very bottom of Neptune’s atmosphere, pressures are 100,000 times larger than on Earth. Below the atmosphere is the mantle. On Earth, the mantle is composed mostly of molten rock. On Neptune, the mantle is comprised of various ices such as methane, water, and ammonia. At a depth of around 4,350 miles (7,000 kilometers), pressures and temperatures in the mantle become so extreme that the carbon atoms in methane molecules break apart and form into diamond, which then proceeds to fall through the mantle as a kind of diamond rain. There may even be an ocean of liquid carbon in the lower mantle, where giant diamond bergs float freely. 

Below the mantle is the core of Neptune. The core of Neptune is largely a mystery, and so scientists rely on models to predict what may be occurring there. It is assumed that the core of Neptune is rocky, composed mostly of metal and silicate rock. The core itself is likely larger than the Earth and has a mass of around 1.2 Earths. Temperatures are estimated to reach as high as 9,260 degrees Fahrenheit (5,126 degrees Celsius). 

Neptune’s Moons

neptune and triton
A Composite Image Showing both Neptune and Its Moon Triton, NASA

Neptune is orbited by 14 known moons. Of those 14 moons, only one, called Triton, is large enough to be spherical. Triton comprises roughly 99% of the total mass of Neptune’s entire moon system. Triton has a diameter of 1,680 miles (2,710 kilometers), making it the seventh-largest moon in the solar system. Triton was discovered only 17 days after the discovery of Neptune, yet not much was known about this moon until the Voyager 2 flyby of Neptune. Triton has become one of the strangest, most interesting moons in the solar system. Unlike every other moon, the orbit of Triton is retrograde, meaning it orbits in the opposite direction of Neptune’s rotation. This suggests that Triton never actually formed in orbit around Neptune. Instead, Triton was likely a dwarf planet that formed in the Kuiper Belt and just happened to get caught in Neptune’s gravity. Although the retrograde motion of Triton may not sound significant, it has actually doomed this moon. The orbit of Triton is slowly degrading, and Triton is currently spiraling towards Neptune. In about 3.6 billion years, Triton will be so close to Neptune that it will be ripped apart by Neptune’s gravity. 

When Voyager 2 approached Triton in 1989, it recorded the coldest measured temperature in the solar system. The surface of Triton drops to a frigid minus 391 degrees Fahrenheit (minus 235 degrees Celsius). Voyager 2 found clear evidence of geologic activity on Triton despite these cold temperatures. Voyager 2 found evidence of volcanism and tectonic activity and a lack of impact craters. Unfortunately, Voyager 2 was only able to map 40% of Triton’s surface, so Triton is one of the most mysterious worlds in the solar system. 

Neptune Fact Sheet

Diameter  30,598 miles (49,244 kilometres)

Mass

17 Earths

Moons

14

Rings

5

Distance from the sun

2.8 billion miles (4.5 billion kilometers)

Length of year

170 Earth years

Length of day

16 hours

Surface temperature 

minus 328 degrees Fahrenheit (minus 200 degrees Fahrenheit)

Atmospheric composition 

80% hydrogen, 19% helium, 1% methane

Surface composition 

Water, methane, ammonia, silicate rock

Discovery date 

September 23, 1846

Discovered by 

Urbain Le Verrier

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

NASA's Voyager 1 resumes sending engineering updates to Earth – Phys.org

Published

 on


NASA’s Voyager 1 spacecraft is depicted in this artist’s concept traveling through interstellar space, or the space between stars, which it entered in 2012. Credit: NASA/JPL-Caltech

For the first time since November, NASA’s Voyager 1 spacecraft is returning usable data about the health and status of its onboard engineering systems. The next step is to enable the spacecraft to begin returning science data again. The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars).

Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the was still receiving their commands and otherwise operating normally. In March, the Voyager engineering team at NASA’s Jet Propulsion Laboratory in Southern California confirmed that the issue was tied to one of the spacecraft’s three onboard computers, called the flight data subsystem (FDS). The FDS is responsible for packaging the science and engineering data before it’s sent to Earth.

300x250x1

The team discovered that a responsible for storing a portion of the FDS memory—including some of the FDS computer’s software code—isn’t working. The loss of that code rendered the science and engineering data unusable. Unable to repair the chip, the team decided to place the affected code elsewhere in the FDS memory. But no single location is large enough to hold the section of code in its entirety.

So they devised a plan to divide affected the code into sections and store those sections in different places in the FDS. To make this plan work, they also needed to adjust those code sections to ensure, for example, that they all still function as a whole. Any references to the location of that code in other parts of the FDS memory needed to be updated as well.

NASA’s Voyager 1 resumes sending engineering updates to Earth
After receiving data about the health and status of Voyager 1 for the first time in five months, members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20. Credit: NASA/JPL-Caltech

The team started by singling out the responsible for packaging the spacecraft’s engineering data. They sent it to its new location in the FDS memory on April 18. A radio signal takes about 22.5 hours to reach Voyager 1, which is over 15 billion miles (24 billion kilometers) from Earth, and another 22.5 hours for a signal to come back to Earth. When the mission flight team heard back from the spacecraft on April 20, they saw that the modification had worked: For the first time in five months, they have been able to check the health and status of the spacecraft.

During the coming weeks, the team will relocate and adjust the other affected portions of the FDS software. These include the portions that will start returning science data.

Voyager 2 continues to operate normally. Launched over 46 years ago, the twin Voyager spacecraft are the longest-running and most distant spacecraft in history. Before the start of their interstellar exploration, both probes flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune.

Provided by
NASA

Citation:
NASA’s Voyager 1 resumes sending engineering updates to Earth (2024, April 22)
retrieved 22 April 2024
from https://phys.org/news/2024-04-nasa-voyager-resumes-earth.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Osoyoos commuters invited to celebrate Earth Day with the Leg Day challenge – Oliver/Osoyoos News – Castanet.net

Published

 on


Osoyoos commuters can celebrate Earth Day as the Town joins in on a national commuter challenge known as “Leg Day,” entering a chance to win sustainable transportation prizes.

The challenge, from Earth Day Canada, is to record 10 sustainable commutes taken without a car.

300x250x1

“Cars are one of the biggest contributors to gas emissions in Canada,” reads an Earth Day Canada statement. “That’s why, Earth Day Canada is launching the national Earth Day is Leg Day Challenge.”

So far, over 42.000 people have participated in the Leg Day challenge.

Participants could win an iGo electric bike, public transportation for a year, or a gym membership.

The Town of Osoyoos put out a message Monday promoting joining the national program.

For more information on the Leg Day challenge click here.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Early bird may dodge verticillium woes in potatoes – Manitobe Co-Operator

Published

 on


Verticillium wilt is a problem for a lot of crops in Manitoba, including canola, sunflowers and alfalfa.

Read Also

Field stress can translate to potato skin flaws.

In potatoes, the fungus Verticillium dahlia is the main cause of potato early die complex. In a 2021 interview with the Co-operator, Mario Tenuta, University of Manitoba soil scientist and main investigator with the Canadian Potato Early Dying Network, suggested the condition can cause yield loss of five to 20 per cent. Other research from the U.S. puts that number as high as 50 per cent.

It also becomes a marketing issue when stunted spuds fall short of processor preferences.

Verticillium in potatoes can significantly reduce yield and, being soil-borne, is difficult to manage.

Preliminary research results suggest earlier planting of risk-prone fields could reduce losses, in part due to colder soil temperatures earlier in the season.

Unlike other potato fungal issues that can be addressed with foliar fungicide, verticillium hides in the soil.

“Commonly we use soil fumigation and that’s very expensive,” said Julie Pasche, plant pathologist with North Dakota State University.

There are options. In 2017, labels expanded for the fungicide Aprovia, Syngenta’s broad-spectrum answer for leaf spots or powdery mildews in various horticulture crops. In-furrow verticillium suppression for potatoes was added to the label.

There has also been interest in biofumigation. Mustard has been tagged as a potential companion crop for potatoes, thanks to its production of glucosinolate and the pathogen- and pest-inhibiting substance isothiocyanate.

Last fall, producers heard that a new, sterile mustard variety specifically designed for biofumigation had been cleared for sale in Canada, although seed supplies for 2024 are expected to be slim. AAC Guard was specifically noted for its effectiveness against verticillium wilt.

Timing is everything

Researchers at NDSU want to study the advantage of natural plant growth patterns.

“What we’d like to look at are other things we can do differently, like verticillium fertility management and water management, as well as some other areas and how they may be affected by planting date,” Pasche said.

The idea is to find a chink in the fungus’s life cycle.

Verticillium infects roots in the spring. From there, it colonizes the plant, moving through the root vascular tissue and into the stem. This is the cause of in-season vegetative wilting, Pasche noted.

As it progresses, plant cells die, leaving behind tell-tale black dots on dead tissue. Magnification of those dots reveals what look like dark bunches of grapes — tiny spheres containing melanized hyphae, a resting form of the fungus called microsclerotia.

The dark colour comes from melanin, the same pigment found in human skin. This pigmentation protects the microsclerotia from ultraviolet light.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending