New results from NASA's DART planetary defense mission confirm we could deflect deadly asteroids | Canada News Media
Connect with us

Science

New results from NASA’s DART planetary defense mission confirm we could deflect deadly asteroids

Published

 on

CTIO / NOIRLab / SOAR / NSF / AURA/ T. Kareta (Lowell Observatory), M. Knight. Credit: US Naval Academy

What would we do if we spotted a hazardous asteroid on a collision course with Earth? Could we deflect it safely to prevent the impact?

Last year, NASA’s Double Asteroid Redirection Test (DART) mission tried to find out whether a “kinetic impactor” could do the job: smashing a 600kg spacecraft the size of a fridge into an asteroid the size of an Aussie Rules football field.

Early results from this first real-world test of our potential planetary defense systems looked promising. However, it’s only now that the first scientific results are being published: five papers in Nature have recreated the impact, and analyzed how it changed the asteroid’s momentum and orbit, while two studies investigate the debris knocked off by the impact.

The conclusion: “kinetic impactor technology is a viable technique to potentially defend Earth if necessary”.

Small asteroids could be dangerous, but hard to spot

Our is full of debris, left over from the early days of planet formation. Today, some 31,360 asteroids are known to loiter around Earth’s neighborhood.

Although we have tabs on most of the big, kilometer-sized ones that could wipe out humanity if they hit Earth, most of the smaller ones go undetected.

Just over ten years ago, an 18-meter asteroid exploded in our atmosphere over Chelyabinsk, Russia. The shockwave smashed thousands of windows, wreaking havoc and injuring some 1,500 people.

A 150-meter asteroid like Dimorphos wouldn’t wipe out civilization, but it could cause mass casualties and regional devastation. However, these smaller space rocks are harder to find: we think we have only spotted around 40% of them so far.

The DART mission

Suppose we did spy an asteroid of this scale on a collision course with Earth. Could we nudge it in a different direction, steering it away from disaster?

Hitting an asteroid with enough force to change its orbit is theoretically possible, but can it actually be done? That’s what the DART mission set out to determine.

Specifically, it tested the “kinetic impactor” technique, which is a fancy way of saying “hitting the asteroid with a fast-moving object”.

The asteroid Dimorphos was a perfect target. It was in orbit around its larger cousin, Didymos, in a loop that took just under 12 hours to complete.

The impact from the DART spacecraft was designed to slightly change this orbit, slowing it down just a little so that the loop would shrink, shaving an estimated seven minutes off its round trip.

A self-steering spacecraft

For DART to show the kinetic impactor technique is a possible tool for planetary defense, it needed to demonstrate two things:

  • that its navigation system could autonomously maneuver and target an asteroid during a high-speed encounter
  • that such an impact could change the asteroid’s orbit.

In the words of Cristina Thomas of Northern Arizona University and colleagues, who analyzed the changes to Dimorphos’ orbit as a result of the impact, “DART has successfully done both”.

The DART spacecraft steered itself into the path of Dimorphos with a new system called Small-body Maneuvering Autonomous Real Time Navigation (SMART Nav), which used the onboard camera to get into a position for maximum impact.

More advanced versions of this system could enable future missions to choose their own landing sites on distant asteroids where we can’t image the rubble-pile terrain well from Earth. This would save the trouble of a scouting trip first!

Dimorphos itself was one such asteroid before DART. A team led by Terik Daly of Johns Hopkins University has used high-resolution images from the mission to make a detailed shape model. This gives a better estimate of its mass, improving our understanding of how these types of asteroids will react to impacts.

Asteroid statistics and the threats posed by asteroids of different sizes. Credit: NASA’s DART press brief

Dangerous debris

The impact itself produced an incredible plume of material. Jian-Yang Li of the Planetary Science Institute and colleagues have described in detail how the ejected material was kicked up by the impact and streamed out into a 1,500km tail of debris that could be seen for almost a month.

Streams of material from comets are well known and documented. They are mainly dust and ice, and are seen as harmless meteor showers if they cross paths with Earth.

Asteroids are made of rockier, stronger stuff, so their streams could pose a greater hazard if we encounter them. Recording a real example of the creation and evolution of debris trails in the wake of an asteroid is very exciting. Identifying and monitoring such asteroid streams is a key objective of planetary defense efforts such as the Desert Fireball Network we operate from Curtin University.

A bigger than expected result

So how much did the impact change Dimorphous’ orbit? By much more than the expected amount. Rather than changing by seven minutes, it had become 33 minutes shorter!

This larger-than-expected result shows the change in Dimorphos’ orbit was not just from the impact of the DART spacecraft. The larger part of the change was due to a recoil effect from all the ejected material flying off into space, which Ariel Graykowski of the SETI Institute and colleagues estimated as between 0.3% and 0.5% of the asteroid’s total mass.

A first success

The success of NASA’s DART mission is the first demonstration of our ability to protect Earth from the threat of hazardous asteroids.

At this stage, we still need quite a bit of warning to use this kinetic impactor technique. The earlier we intervene in an asteroid’s orbit, the smaller the change we need to make to push it away from hitting Earth. (To see how it all works, you can have a play with NASA’s NEO Deflection app.)

But should we? This is a question that will need answering if we ever do have to redirect a hazardous asteroid. In changing the , we’d have to be sure we weren’t going to push it in a direction that would hit us in future too.

However, we are getting better at detecting asteroids before they reach us. We have seen two in the past few months alone: 2022WJ1, which impacted over Canada in November, and Sar2667, which came in over France in February.

We can expect to detect a lot more in future, with the opening of the Vera Rubin Observatory in Chile at the end of this year.

More information:
R. Terik Daly et al, Successful Kinetic Impact into an Asteroid for Planetary Defense, Nature (2023). DOI: 10.1038/s41586-023-05810-5

Andrew F. Cheng et al, Momentum Transfer from the DART Mission Kinetic Impact on Asteroid Dimorphos, Nature (2023). DOI: 10.1038/s41586-023-05878-z

Cristina A. Thomas et al, Orbital Period Change of Dimorphos Due to the DART Kinetic Impact, Nature (2023). DOI: 10.1038/s41586-023-05805-2

Jian-Yang Li et al, Ejecta from the DART-produced active asteroid Dimorphos, Nature (2023). DOI: 10.1038/s41586-023-05811-4 Ariel

Graykowski et al, Light Curves and Colors of the Ejecta from Dimorphos after the DART Impact, Nature (2023). DOI: 10.1038/s41586-023-05852-9

Provided by
The Conversation

 

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Citation:
New results from NASA’s DART planetary defense mission confirm we could deflect deadly asteroids (2023, March 4)
retrieved 4 March 2023
from https://phys.org/news/2023-03-results-nasa-dart-planetary-defense.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending

Exit mobile version