adplus-dvertising
Connect with us

Science

New study finds the Universe has less dark energy than previously theorized

Published

 on

The makeup and the growth of the Universe have never been clearer — or as confusing — as they’ve been revealed to be in a massive new survey of the markers astronomers use to measure the cosmos.

A new analysis called Pantheon+ has narrowed down the uncertainty in the expansion and makeup of the Universe. To do this, Pantheon+ builds on two long-standing astronomical projects — one called Pantheon, combining observations of 1,550 supernovae reaching back 10 billion years; and another called SH0ES, which measures relatively close pulsing stars known as Cepheids within 10 million light years.

The Pantheon+ analysis of the makeup and expansion of the Universe published recently in The Astrophysical Journal finds that 66.2 percent of the Universe is made up of dark energy, the mysterious accelerator driving the Universe’s speeding expansion, slightly less than past estimates of about 68 percent.

Only 33.8 percent of the Universe is matter — and the vast majority of that is impossible-to-observe dark matter, whose existence astronomers can only infer from galactic-scale gravitational effects. At the accepted rate of 85 percent dark matter to 15 percent normal (baryonic) matter, that means just slightly less than 5 percent of the mass of the Universe is the stuff we can see around us.

300x250x1

Pantheon+ was also able to measure the Universe’s expansion to within 1.3 percent uncertainty, close enough that it is now undeniable that the early Universe and the current Universe don’t expand at the same pace.

Speaking with Inverse, lead author Dillon Brout, a NASA Einstein fellow at the Center for Astrophysics | Harvard-Smithsonian, says that this degree of precision means that instead of being limited by the data for measuring the growth of the Universe, “we’re approaching the limit where we’re limited by the uncertainties of our method.”

WHAT’S NEW — Pantheon+ offers as precise a measurement of dark energy, dark matter, and baryonic matter as can currently be assembled.

And “assembled” is the right word — this work combines analysis from the original Pantheon, which measured dark matter, and the Supernova H0 for the Equation of State (SH0ES), which measures the Hubble constant at which the Universe expands.

Pantheon+ synthesizes two decades of data from different telescopes and astronomers into a single analysis; it represents “an all-star sample,” Brout explains. And this is the biggest set of exploding stars that have been put together — over 1500, half again as many as an earlier version that focused just on the supernovae.

But Brout notes that’s about all that can be gained with current equipment. The limiting factor is time. “We get about one supernova per year that helps us measure the Hubble constant, and we’ve got 42 of them now. So we’re going to have to wait a while just to double our data set,” he says.

The cosmic microwave background is one of the best ways to understand the early universe. Print Collector/Hulton Archive/Getty Images

WHY IT MATTERS — Surveys like Pantheon+ allow astronomers to cross-check their results across different methods and different targets. Some components measure Cepheids, relatively nearby stars whose brightness waxes and wanes regularly; others measure supernovae who outshone galaxies up to 10 billion years ago.

For the time being, this is about as accurate as these kinds of measurements can get. “A lot of people will think ‘of course, you have to use James Webb,’” says Brout, “and the answer to that is ‘yes’ — but it’s not immediately clear how much it’s going to help us.” The James Webb Space Telescope will let astronomers look at the ways stellar dust and observations in different wavelengths impact observations of the anchors that hold their measurements in place.

The increasing accuracy of this analysis has also increased one of the biggest problems in cosmology. Pantheon+ has narrowed down the speed at which the Universe is expanding to 73.4 kilometers per second per megaparsec — give or take 1.3 percent. This means that, locally, space is getting bigger at about 164,000 miles per hour.

But that’s just here and, more importantly, now. Measurements of the cosmic microwave background show that in its earliest days, the Universe was definitely expanding slower, about 67 kilometers per second per megaparsec. As surveys like Pantheon+ get more accurate, it gets clearer and clearer that this discrepancy — the Hubble tension — can’t just be explained away by the difficulty of getting clear observations.

The Universe’s expansion has undeniably sped up, but it’s not quite clear why.

WHAT’S NEXT — As an overview of the field, Brout notes Pantheon+ is a way of capturing the state of the art right before an enormous transformation. Over the next two years, the Vera Rubin Observatory in Chile will come on line, and “the game is going to kind of change in the future.”

While work measuring dark matter, dark energy, and the expansion of the cosmos have been built on many different observations with many different tools, “going forward we have these big, billion-dollar telescopes that are collecting really enormous samples on their own.”

How enormous? The Rubin Observatory expects to find over a million of the right kind of ancient supernovae in the next dozen years – a thousand times more than what Pantheon+ collates.

The scale of the teams working on this data will change, too: “these are going to be huge collaborations with hundreds of people and they’re going to nail a lot of these things down.” But for now, “before these really big giant telescopes turn on,” Brout hopes Pantheon+ can be the apex of an era.

Source link

Continue Reading

Science

Giant prehistoric salmon had tusk-like spikes used for defence, building nests: study

Published

 on

A new paper says a giant salmon that lived five million years ago in the coastal waters of the Pacific Northwest used tusk-like spikes as defense mechanisms and for building nests to spawn.

The initial fossil discoveries of the 2.7-metre-long salmon in Oregon in the 1970s were incomplete and led researchers to suggest the fish had fang-like teeth.

The now-extinct fish was dubbed the “saber-tooth salmon,” but the study published in the peer-reviewed journal PLOS One today renames it the “spike-toothed salmon” and says both males and females possessed the “multifunctional” feature.

Study co-author Edward Davis says the revelation about the tusk-like teeth came after the discovery of fossilized skulls at a site in Oregon in 2014.

300x250x1

Davis, an associate professor in the department of earth sciences at the University of Oregon, says he was surprised to see the skulls had “sideways teeth.”

Contrary to the belief since the 1970s, he says the teeth couldn’t have been used for any kind of biting.

“That was definitely a surprising moment,” Davis says of the fossil discovery in 2014. “I realized that all of the artwork and all of the publicity materials … we had just made two months prior, for the new exhibit, were all out of date.”

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

SpaceX sends 23 Starlink satellites into low-Earth orbit

Published

 on

April 23 (UPI) — SpaceX launched 23 Starlink satellites into low-Earth orbit Tuesday evening from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.

Liftoff occurred at 6:17 EDT with a SpaceX Falcon 9 rocket sending the payload of 23 Starlink satellites into orbit.

The Falcon 9 rocket’s first-stage booster landed on an autonomous drone ship in the Atlantic Ocean after separating from the rocket’s second stage and its payload.

The entire mission was scheduled to take about an hour and 5 minutes to complete from launch to satellite deployment.

300x250x1

The mission was the ninth flight for the first-stage booster that previously completed five Starlink satellite-deployment missions and three other missions.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

NASA Celebrates As 1977’s Voyager 1 Phones Home At Last

Published

 on

Voyager 1 has finally returned usable data to NASA from outside the solar system after five months offline.

Launched in 1977 and now in its 46th year, the probe has been suffering from communication issues since November 14. The same thing also happened in 2022. However, this week, NASA said that engineers were finally able to get usable data about the health and status of its onboard engineering systems.

Slow Work

Fixing Voyager 1 has been slow work. It’s currently over 15 billion miles (24 billion kilometers) from Earth, which means a radio message takes about 22.5 hours to reach it—and the same again to receive an answer.

The problem appears to have been its flight data subsystem, one of one of the spacecraft’s three onboard computers. Its job is to package the science and engineering data before it’s sent to Earth. Since the computer chip that stores its memory and some of its code is broken, engineers had to re-insert that code into a new location.

300x250x1

Next up for engineers at NASA’s Jet Propulsion Laboratory in California is to adjust other parts of the FDS software so Voyager 1 can return to sending science data.

Beyond The ‘Heliopause’

The longest-running and most distant spacecraft in history, Voyager 1, was launched on September 5, 1977, while its twin spacecraft, Voyager 2, was launched a little earlier on August 20, 1977. Voyager 2—now 12 billion miles away and traveling more slowly—continues to operate normally.

Both are now beyond what astronomers call the heliopause—a protective bubble of particles and magnetic fields created by the sun, which is thought to represent the sun’s farthest influence. Voyager 1 got to the heliopause in 2012 and Voyager 2 in 2018.

Pale Blue Dot

Since their launch from Cape Canaveral, Florida, aboard Titan-Centaur rockets, Voyager 1 and Voyager 2 have had glittering careers. Both photographed Jupiter and Saturn in 1979 and 1980 before going their separate ways. Voyager 1 could have visited Pluto, but that was sacrificed so scientists could get images of Saturn’s moon, Titan, a maneuver that made it impossible for it to reach any other body in the solar system. Meanwhile, Voyager 2 took slingshots around the planets to also image Uranus in 1986 and Neptune in 1989—the only spacecraft ever to image the two outer planets.

On February 14, 1990, when 3.7 billion miles from Earth, Voyager 1 turned its cameras back towards the sun and took an image that included our planet as “a mote of dust suspended in a sunbeam.” Known as the “Pale Blue Dot,” it’s one of the most famous photos ever taken. It was remastered in 2019.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending