Connect with us

Science

New study outlines steps higher education should take to prepare a new quantum workforce – Science Daily

Published

 on


A new study outlines ways colleges and universities can update their curricula to prepare the workforce for a new wave of quantum technology jobs. Three researchers, including Rochester Institute of Technology Associate Professor Ben Zwickl, suggested steps that need to be taken in a new paper in Physical Review Physics Education Research after interviewing managers at more than 20 quantum technology companies across the U.S.

The study’s authors from University of Colorado Boulder and RIT set out to better understand the types of entry-level positions that exist in these companies and the educational pathways that might lead into those jobs. They found that while the companies still seek employees with traditional STEM degrees, they want the candidates to have a grasp of fundamental concepts in quantum information science and technology.

“For a lot of those roles, there’s this idea of being ‘quantum aware’ that’s highly desirable,” said Zwickl, a member of RIT’s Future Photon Initiative and Center for Advancing STEM Teaching, Learning and Evaluation. “The companies told us that many positions don’t need to have deep expertise, but students could really benefit from a one- or two-semester introductory sequence that teaches the foundational concepts, some of the hardware implementations, how the algorithms work, what a qubit is, and things like that. Then a graduate can bring in all the strength of a traditional STEM degree but can speak the language that the company is talking about.”

The authors said colleges and universities should offer introductory, multidisciplinary courses with few prerequisites that will allow software engineering, computer science, physics, and other STEM majors to learn the core concepts together. Zwickl said providing quantum education opportunities to students across disciplines will be important because quantum technology has the opportunity to disrupt a wide range of fields.

“It’s a growing industry that will produce new sensors, imaging, communication, computing technologies, and more,” said Zwickl. “A lot of the technologies are in a research and development phase, but as they start to move toward commercialization and mass production, you will have end-users who are trying to figure out how to apply the technology. They will need technical people on their end that are fluent enough with the ideas that they can make use of it.”

Zwickl’s participation in the project was supported in part by funding RIT received from the NSF’s Quantum Leap Challenge Institutes program. As a co-PI and lead on the education and workforce development for the proposal, he said he is hoping to apply many of the lessons learned from the study to RIT’s curriculum. He is in the process of developing two new introductory RIT courses in quantum information and science as well as an interdisciplinary minor in the field.

Story Source:

Materials provided by Rochester Institute of Technology. Original written by Luke Auburn. Note: Content may be edited for style and length.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

T. rex got huge via major teenage growth spurt – CBC.ca

Published

 on


Large meat-eating dinosaurs attained their great size through very different growth strategies, with some taking a slow and steady path and others experiencing an adolescent growth spurt, according to scientists who analyzed slices of fossilized bones.

The researchers examined the annual growth rings — akin to those in tree trunks — in bones from 11 species of theropods, a broad group spanning all the big carnivorous dinosaurs including Tyrannosaurus rex and even birds. The study provides insight into the lives of some of the most fearsome predators ever to walk the Earth.

The team looked at samples from museums in the United States, Canada, China and Argentina and even received clearance to cut into bones from one of the world’s most famous T. rex fossils, known as Sue and housed at the Field Museum in Chicago, using a diamond-tipped saw and drill.

Sue’s leg bones — a huge femur and fibula — helped illustrate that T. rex and its relatives — known as tyrannosaurs — experienced a period of extreme growth during adolescence and reached full adult size by around age 20. Sue, measuring about 13 metres, lived around 33 years.

Sue inhabited South Dakota about a million years before dinosaurs and many other species were wiped out by an asteroid impact 66 million years ago.

Other groups of large theropods tended to have more steady rates of growth over a longer period of time. That growth strategy was detected in lineages that arose worldwide earlier in the dinosaur era and later were concentrated in the southern continents.

Examples included Allosaurus and Acrocanthosaurus from North America, Cryolophosaurus from Antarctica and a recently discovered as-yet-unnamed species from Argentina that rivaled T. rex in size. The Argentine dinosaur, from a group called carcharodontosaurs, did not reach its full adult size until its 40s and lived to about age 50.

Big theropods share the same general body design, walking on two legs and boasting large skulls, strong jaws and menacing teeth.

“Prior to our study, it was known that T. rex grew very quickly, but it was not clear if all theropod dinosaurs reached gigantic size in the same way, or if there were multiple ways it was done,” said paleontologist and study lead author Tom Cullen of the North Carolina Museum of Natural Sciences and North Carolina State University, also affiliated with the Field Museum.

The research was published this week in the journal Proceedings of the Royal Society B.

“Theropod dinosaurs represent the largest bipedal animals to have ever lived and were also the dominant predators in terrestrial ecosystems for over 150 million years — more than twice as long as mammals have been dominant,” added University of Minnesota paleontologist and study co-author Peter Makovicky

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Slow and steady or a big spurt? How to grow a ferocious dinosaur – Cape Breton Post

Published

 on


By Will Dunham

WASHINGTON (Reuters) – Large meat-eating dinosaurs attained their great size through very different growth strategies, with some taking a slow and steady path and others experiencing an adolescent growth spurt, according to scientists who analyzed slices of fossilized bones.

The researchers examined the annual growth rings – akin to those in tree trunks – in bones from 11 species of theropods, a broad group spanning all the big carnivorous dinosaurs including Tyrannosaurus rex and even birds. The study provides insight into the lives of some of the most fearsome predators ever to walk the Earth.

The team looked at samples from museums in the United States, Canada, China and Argentina and even received clearance to cut into bones from one of the world’s most famous T. rex fossils, known as Sue and housed at the Field Museum in Chicago, using a diamond-tipped saw and drill.

Sue’s leg bones – a huge femur and fibula – helped illustrate that T. rex and its relatives – known as tyrannosaurs – experienced a period of extreme growth during adolescence and reached full adult size by around age 20. Sue, measuring about 42 feet (13 metres), lived around 33 years.

Sue inhabited South Dakota about a million years before dinosaurs and many other species were wiped out by an asteroid impact 66 million years ago.

Other groups of large theropods tended to have more steady rates of growth over a longer period of time. That growth strategy was detected in lineages that arose worldwide earlier in the dinosaur era and later were concentrated in the southern continents.

Examples included Allosaurus and Acrocanthosaurus from North America, Cryolophosaurus from Antarctica and a recently discovered as-yet-unnamed species from Argentina that rivaled T. rex in size. The Argentine dinosaur, from a group called carcharodontosaurs, did not reach its full adult size until its 40s and lived to about age 50.

Big theropods share the same general body design, walking on two legs and boasting large skulls, strong jaws and menacing

teeth.

“Prior to our study, it was known that T. rex grew very quickly, but it was not clear if all theropod dinosaurs reached gigantic size in the same way, or if there were multiple ways it was done,” said paleontologist and study lead author Tom Cullen of the North Carolina Museum of Natural Sciences and North Carolina State University, also affiliated with the Field Museum.

The research was published this week in the journal Proceedings of the Royal Society B.

“Theropod dinosaurs represent the largest bipedal animals to have ever lived and were also the dominant predators in terrestrial ecosystems for over 150 million years – more than twice as long as mammals have been dominant,” added University of Minnesota paleontologist and study co-author Peter Makovicky.

(Reporting by Will Dunham; Editing by Peter Cooney)

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Neutrinos Yield First Experimental Evidence of the CNO Energy-Production Mechanism of the Universe – SciTechDaily

Published

 on


View into the interior of the Borexino detector. Credit: Borexino Collaboration

Neutrinos Yield First Experimental Evidence of Catalyzed Fusion Dominant in Many Stars

An international team of about 100 scientists of the Borexino Collaboration, including particle physicist Andrea Pocar at the University of Massachusetts Amherst, report in Nature this week detection of neutrinos from the sun, directly revealing for the first time that the carbon-nitrogen-oxygen (CNO) fusion-cycle is at work in our sun.

The CNO cycle is the dominant energy source powering stars heavier than the sun, but it had so far never been directly detected in any star, Pocar explains.

For much of their life, stars get energy by fusing hydrogen into helium, he adds. In stars like our sun or lighter, this mostly happens through the ‘proton-proton’ chains. However, many stars are heavier and hotter than our sun, and include elements heavier than helium in their composition, a quality known as metallicity. The prediction since the 1930’s is that the CNO-cycle will be dominant in heavy stars.

Neutrinos emitted as part of these processes provide a spectral signature allowing scientists to distinguish those from the ‘proton-proton chain’ from those from the ‘CNO-cycle.’ Pocar points out, “Confirmation of CNO burning in our sun, where it operates at only one percent, reinforces our confidence that we understand how stars work.”

Borexino Detector Under Apennine Mountains

The Borexino detector lies deep under the Apennine Mountains in central Italy at the INFN’s Laboratori Nazionali del Gran Sasso. It detects neutrinos as flashes of light produced when neutrinos collide with electrons in 300-tons of ultra-pure organic scintillator. Credit: Borexino Collaboration

Beyond this, CNO neutrinos can help resolve an important open question in stellar physics, he adds. That is, how the sun’s central metallicity, as can only be determined by the CNO neutrino rate from the core, is related to metallicity elsewhere in a star. Traditional models have run into a difficulty – surface metallicity measures by spectroscopy do not agree with the sub-surface metallicity measurements inferred from a different method, helioseismology observations. 

Pocar says neutrinos are really the only direct probe science has for the core of stars, including the sun, but they are exceedingly difficult to measure. As many as 420 billion of them hit every square inch of the earth’s surface per second, yet virtually all pass through without interacting. Scientists can only detect them using very large detectors with exceptionally low background radiation levels. 

The Borexino detector lies deep under the Apennine Mountains in central Italy at the INFN’s Laboratori Nazionali del Gran Sasso. It detects neutrinos as flashes of light produced when neutrinos collide with electrons in 300-tons of ultra-pure organic scintillator. Its great depth, size, and purity make Borexino a unique detector for this type of science, alone in its class for low-background radiation, Pocar says. The project was initiated in the early 1990s by a group of physicists led by Gianpaolo Bellini at the University of Milan, Frank Calaprice at Princeton and the late Raju Raghavan at Bell Labs.

Until its latest detections, the Borexino collaboration had successfully measured components of the ‘proton-proton’ solar neutrino fluxes, helped refine neutrino flavor-oscillation parameters, and most impressively, even measured the first step in the cycle: the very low-energy ‘pp’ neutrinos, Pocar recalls.

Its researchers dreamed of expanding the science scope to also look for the CNO neutrinos – in a narrow spectral region with particularly low background – but that prize seemed out of reach. However, research groups at Princeton, Virginia Tech and UMass Amherst believed CNO neutrinos might yet be revealed using the additional purification steps and methods they had developed to realize the exquisite detector stability required.

Over the years and thanks to a sequence of moves to identify and stabilize the backgrounds, the U.S. scientists and the entire collaboration were successful. “Beyond revealing the CNO neutrinos which is the subject of this week’s Nature article, there is now even a potential to help resolve the metallicity problem as well,” Pocar says.

Before the CNO neutrino discovery, the lab had scheduled Borexino to end operations at the close of 2020. But because the data used in the analysis for the Nature paper was frozen, scientists have continued collecting data, as the central purity has continued to improve, making a new result focused on the metallicity a real possibility, Pocar says. Data collection could extend into 2021 since the logistics and permitting required, while underway, are non-trivial and time-consuming. “Every extra day helps,” he remarks.

Pocar has been with the project since his graduate school days at Princeton in the group led by Frank Calaprice, where he worked on the design, construction of the nylon vessel and the commissioning of the fluid handling system. He later worked with his students at UMass Amherst on data analysis and, most recently, on techniques to characterize the backgrounds for the CNO neutrino measurement.

Reference: “Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun” by The Borexino Collaboration, 25 November 2020, Nature.
DOI: 10.1038/s41586-020-2934-0

This work was supported in the U.S. by the National Science Foundation. Borexino is an international collaboration also funded by the Italian National Institute for Nuclear Physics (INFN), and funding agencies in Germany, Russia and Poland.

Let’s block ads! (Why?)



Source link

Continue Reading

Trending