Connect with us

Science

Perseverance Mars Rover to acquire first sample – Phys.org

Published

 on


A light-colored “paver stone” like the ones seen in this mosaic will be the likely target for first sampling by the Perseverance rover. The image was taken on July 8, 2021 in the “Cratered Floor Fractured Rough” geologic unit at Jezero Crater. Credit: NASA/JPL-Caltech/ASU/MSSS

NASA is making final preparations for its Perseverance Mars rover to collect its first-ever sample of Martian rock, which future planned missions will transport to Earth. The six-wheeled geologist is searching for a scientifically interesting target in a part of Jezero Crater called the “Cratered Floor Fractured Rough.”

This important mission milestone is expected to begin within the next two weeks. Perseverance landed in Jezero Crater on Feb. 18, and NASA kicked off the rover mission’s science phase June 1, exploring a 1.5-square-mile (4-square-kilometer) patch of crater floor that may contain Jezero’s deepest and most ancient layers of exposed bedrock.

“When Neil Armstrong took the first sample from the Sea of Tranquility 52 years ago, he began a process that would rewrite what humanity knew about the Moon,” said Thomas Zurbuchen, associate administrator for science at NASA Headquarters. “I have every expectation that Perseverance’s first sample from Jezero Crater, and those that come after, will do the same for Mars. We are on the threshold of a new era of planetary science and discovery.”

It took Armstrong 3 minutes and 35 seconds to collect that first Moon sample. Perseverance will require about 11 days to complete its first sampling, as it must receive its instructions from hundreds of millions of miles away while relying on the most complex and capable, as well as the cleanest, mechanism ever to be sent into space—the Sampling and Caching System.

[embedded content]

Watch as NASA-JPL engineers test the Sample Caching System on the Perseverance Mars rover. Described as one of the most complex robotic systems ever built, the Sample and Caching System will collect core samples from the rocky surface of Mars, seal them in tubes and leave them for a future mission to retrieve and bring back to Earth. Credit: NASA-JPL/Caltech

Precision instruments working together

The sampling sequence begins with the rover placing everything necessary for sampling within reach of its 7-foot-long (2-meter-long) robotic arm. It will then perform an imagery survey, so NASA’s science team can determine the exact location for taking the first sample and a separate target site in the same area for “proximity science.”

“The idea is to get valuable data on the rock we are about to sample by finding its geologic twin and performing detailed in-situ analysis,” said science campaign co-lead Vivian Sun, from NASA’s Jet Propulsion Laboratory in Southern California. “On the geologic double, first we use an abrading bit to scrape off the top layers of rock and dust to expose fresh, unweathered surfaces, blow it clean with our Gas Dust Removal Tool, and then get up close and personal with our turret-mounted proximity science instruments SHERLOC, PIXL, and WATSON.”

SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals), PIXL (Planetary Instrument for X-ray Lithochemistry), and the WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) camera will provide mineral and chemical analysis of the abraded target.

Perseverance’s SuperCam and Mastcam-Z instruments, both located on the rover’s mast, will also participate. While SuperCam fires its laser at the abraded surface, spectroscopically measuring the resulting plume and collecting other data, Mastcam-Z will capture high-resolution imagery.

Working together, these five instruments will enable unprecedented analysis of geological materials at the worksite.

“After our pre-coring science is complete, we will limit rover tasks for a sol, or a Martian day,” said Sun. “This will allow the rover to fully charge its battery for the events of the following day.”

Sampling day kicks off with the sample-handling arm within the Adaptive Caching Assembly retrieving a sample tube, heating it, and then inserting it into a coring bit. A device called the bit carousel transports the tube and bit to a rotary-percussive drill on Perseverance’s robotic arm, which will then drill the untouched geologic “twin” of the studied the previous sol, filling the tube with a core sample roughly the size of a piece of chalk.

Perseverance’s arm will then move the bit-and-tube combination back into bit carousel, which will transfer it back into the Adaptive Caching Assembly, where the sample will be measured for volume, photographed, hermetically sealed, and stored. The next time the sample tube contents are seen, they will be in a clean room facility on Earth, for analysis using scientific instruments much too large to send to Mars.

“Not every sample Perseverance is collecting will be done in the quest for ancient life, and we don’t expect this first sample to provide definitive proof one way or the other,” said Perseverance project scientist Ken Farley, of Caltech. “While the rocks located in this geologic unit are not great time capsules for organics, we believe they have been around since the formation of Jezero Crater and incredibly valuable to fill gaps in our geologic understanding of this region—things we’ll desperately need to know if we find life once existed on Mars.”


Explore further

Signs of life on Mars? Perseverance rover begins the hunt


More information:
To learn more about Perseverance, visit: nasa.gov/perseverance and mars.nasa.gov/mars2020/

Provided by
NASA

Citation:
Perseverance Mars Rover to acquire first sample (2021, July 21)
retrieved 22 July 2021
from https://phys.org/news/2021-07-perseverance-mars-rover-sample.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Adblock test (Why?)



Source link

Continue Reading

Science

Russia Just Launched a New Science Module to the Space Station – Universe Today

Published

 on


The International Space Station (ISS) is about to get a little bigger.

On July 21, the Russian Space Agency launched the station’s newest module into orbit aboard a Proton-M rocket. The module, dubbed Nauka (which means science), is the station’s first new module since 2016, aside from some new docking ports and airlocks. The Nauka module includes several important additions that will enhance the station’s capabilities.

One of Nauka’s primary systems is its guidance and navigation abilities, which will provide additional attitude control capabilities to the ISS. At 13 meters long, the module’s interior contains new research facilities and storage space. The module also provides additional sleeping quarters for station crew. This is an important addition, since the United States recently re-established its human spaceflight capabilities with two new spacecraft: SpaceX’s Crew Dragon capsule, and the upcoming Boeing Starliner, slated for another test flight later this year. The addition of both new vehicles alongside the Russian Soyuz vehicle means that bigger crews can visit the station at once, and Nauka will provide these larger crews with a home.

Nauka is also carrying one other new piece of technology: a robotic arm built by the European Space Agency. A counterpart to the Canadarm 2 already on station, the European arm is 11 meters long and is designed to ‘walk’ around the Russian segment of the ISS (which the Canadarm can’t reach), carrying out repairs and upgrades as necessary.

Artist’s Rendering of Nauka attached to the Station. Credit: NASA.

Nauka’s development was a troubled process, and it has gone through years of problems and delays. It was first built as a backup to the Zarya module – the first component of the ISS ever launched in 1998. Nauka was set to join its twin in orbit in 2007, but failed to launch then, and was delayed again several times for various reasons, including fuel leaks, expired warranties, and most recently, pandemic delays.

In recent months, political tensions have raised questions as to the extent of Russia’s commitment to its partnership role in ISS. Nauka’s launch, at last, provides some concrete evidence that Russia is indeed committed to maintaining its presence on the station, at least in the short term, which is good news for everyone involved.

Unfortunately, Nauka’s launch didn’t go entirely smoothly. Although it reached orbit and its antenna and solar panels deployed as expected, a computer glitch caused its first orbit-raising maneuver to fail. After some troubleshooting, a second attempt at the maneuver appears to have been successfully carried out by backup thrusters on July 22.

If all goes well from here on out, it should take about a week for Nauka to reach the station. The latest update from the Russian Space Agency indicated that the next orbit raising attempt is scheduled for Tuesday July 27.

Plans are still in place to remove the Pirs docking port from the station this week (which will burn up in the atmosphere) to make room for Nauka, suggesting that confidence is high that the module will arrive as planned.

Learn more: Jeff Foust, “Russia launches Nauka module to International Space StationSpaceNews.

Featured Image: Nauka’s launch on July 21. Roscosmos/NASATV.

Adblock test (Why?)



Source link

Continue Reading

Science

Elon Musk's SpaceX lands NASA launch contract for mission to Jupiter's moon Europa – Euronews

Published

 on


Elon Musk’s private rocket company SpaceX was awarded a $178 million (€151 million) launch services contract for NASA’s first mission focusing on Jupiter’s icy moon Europa and whether it may host conditions suitable for life, the space agency said on Friday.

The Europa Clipper mission is due for blastoff in October 2024 on a Falcon Heavy rocket owned by Musk’s company, Space Exploration Technologies Corp, from NASA’s Kennedy Space Center in Florida, NASA said in a statement posted online.

The contract marked NASA’s latest vote of confidence in the Hawthorne, California-based company, which has carried several cargo payloads and astronauts to the International Space Station for NASA in recent years.

In April, SpaceX was awarded a $2.9 billion (€2.46 billion) contract to build the lunar lander spacecraft for the planned Artemis program that would carry NASA astronauts back to the moon for the first time since 1972.

But that contract was suspended after two rival space companies, Jeff Bezos’s Blue Origin and defense contractor Dynetics Inc, protested against the SpaceX selection.

Evidence of life?

The company’s partly reusable 23-story Falcon Heavy, currently the most powerful operational space launch vehicle in the world, flew its first commercial payload into orbit in 2019.

NASA did not say what other companies may have bid on the Europa Clipper launch contract.

The probe is to conduct a detailed survey of the ice-covered Jovian satellite, which is a bit smaller than Earth’s moon and is a leading candidate in the search for life elsewhere in the solar system.

A bend in Europa’s magnetic field observed by NASA’s Galileo spacecraft in 1997 appeared to have been caused by a geyser gushing through the moon’s frozen crust from a vast subsurface ocean, researchers concluded in 2018. Those findings supported other evidence of Europa plumes.

Among the Clipper mission’s objectives are to produce high-resolution images of Europa’s surface, determine its composition, look for signs of geologic activity, measure the thickness of its icy shell and determine the depth and salinity of its ocean, NASA said.

Adblock test (Why?)



Source link

Continue Reading

Science

Boeing Starliner Orbital Flight Test 2: Live updates – Space.com

Published

 on


Refresh

2021-07-23T00:18:15.531Z

(Image credit: Kim Shiflett/NASA)

The CST-100 Starliner capsule has passed its flight readiness review (FRR) for the upcoming liftoff, which will kick off the uncrewed Orbital Flight Test 2 (OFT-2) mission to the station, NASA and Boeing representatives announced today (July 22). Read the full story here.

Over the weekend, engineers mated the Starliner spacecraft to its Atlas V rocket, marking a key milestone ahead of the mission’s launch next week. See the photos here.

Adblock test (Why?)



Source link

Continue Reading

Trending