adplus-dvertising
Connect with us

Science

Researchers pinpoint location of extremely energetic particles in a 'Space Manatee' – UM Today

Published

 on



July 4, 2022 — 

An international team of astrophysicists has identified the location where powerful and highly energetic x-rays are being shot out into space from inside a region in space shaped like a giant aquatic mammal called a “Manatee.” They found the spectrum of the object at this location shows there is a “non-classical acceleration process” where particles are being injected and re-accelerated in immensely powerful jets of energy emitted by a black hole. But don’t worry about it irradiating us, since it’s more than 100,000,000,000,000,000 kilometres away from us.

300x250x1

Samar Safi-Harb

The astronomical object known as SS 433 has long been known to house a black hole that is causing blasts of energy to spew out across the Milky Way through jets of highly energetic particles. Considered the first known microquasar, it’s at the centre of what’s left of an exploded star in the constellation Aquila, high up in the summer night sky.

“This fascinating system looks like a beautiful Manatee in space and represents the only known supernova remnant in our Galaxy (out of some 400 such objects) housing a black hole,” says UM astrophysicist Dr. Samar Safi-Harb, Tier 1 Canada Research Chair in Extreme Astrophysics and lead author of the paper that includes scientists from Canada, USA, Europe, and South Korea.

Brydyn Mac Intyre

Brydyn Mac Intyre

UM team member and grad student Brydyn Mac Intyre helped create a striking colour image of this remarkable astronomical object. The blasts of energy terminate at two “earlobes” glowing at radio wavelengths, carved by jets ploughing through space at a quarter of the speed of light. “The space along the jets path glows brilliantly in high energy x-ray and gamma-ray light tens of light-years away from the black hole, but not visible to the naked eye,” says Mac Intyre.

SS 433 is so powerful astrophysicists have been searching for high-energy gamma-ray radiation from the area. In the late 1990s, Safi-Harb proposed that this system accelerates particles to energies higher than what can be achieved in the most powerful particle accelerators on Earth. It took nearly 20 years for high-energy gamma-ray radiation to be detected; in 2018 researchers at the High-Altitude Water Cherenkov Observatory announced the discovery of high-energy TeV (Tera-electron-volts) gamma-rays from the system. However, the site of particle acceleration could not be pinpointed until now.

Kaya Mori

Kaya Mori

Using the European Space Agency’s XMM-Newton satellite and NASA’s NuSTAR satellite, modern orbiting x-ray telescopes, combined with data obtained from NASA’s Chandra x-ray telescope, this team of researchers were able to pinpoint the location of the ‘hardest’ (or highest energy) X-ray emitting region near SS 433, believed to be the onset of the eastern jet emission on large scales.

Dr. Kaya Mori, collaborator and astrophysicist from Columbia University in New York, says this powerful energy source, now believed to accelerate particles to very high energies, is a strong candidate for a cosmic “PeVatron,” a source that is accelerating cosmic rays up to Peta-electron volt energies, or 1,000,000,000,000,000 volts!

“Given the unusual nature of the spectrum and source location, this discovery challenges the theory of particle acceleration and points to injection and re- energization of the SS 433 jets at large distances, nearly 100 light years away from the black hole,” says Safi-Harb.

She adds: “SS 433 teaches us about, and zooms-in on, the rare case of a supernova remnant powered by a black hole, microquasars, ultra-luminous X-ray sources (a growing class of X-ray emitting sources whose nature is being debated) and is a micro-version of an active galaxy!”

Matthew Band

Matthew Band

This work involved several students from the University of Manitoba and Columbia University, such as Matthew Band, an undergraduate summer research awardee from UM’s Price Faculty of Engineering, who is a co-author on the paper.

“I didn’t expect my summer work to be apart of something like this, I am thrilled,” he said. “It’s an honour to learn from such great people and be a member of this international collaboration.”

The researchers announced the discovery in a paper published in the Astrophysical Journal, to be shortly presented at the International Symposium on High-Energy Gamma-Ray Astronomy in Barcelona.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

SpaceX sends 23 Starlink satellites into low-Earth orbit

Published

 on

April 23 (UPI) — SpaceX launched 23 Starlink satellites into low-Earth orbit Tuesday evening from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.

Liftoff occurred at 6:17 EDT with a SpaceX Falcon 9 rocket sending the payload of 23 Starlink satellites into orbit.

The Falcon 9 rocket’s first-stage booster landed on an autonomous drone ship in the Atlantic Ocean after separating from the rocket’s second stage and its payload.

The entire mission was scheduled to take about an hour and 5 minutes to complete from launch to satellite deployment.

300x250x1

The mission was the ninth flight for the first-stage booster that previously completed five Starlink satellite-deployment missions and three other missions.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

NASA Celebrates As 1977’s Voyager 1 Phones Home At Last

Published

 on

Voyager 1 has finally returned usable data to NASA from outside the solar system after five months offline.

Launched in 1977 and now in its 46th year, the probe has been suffering from communication issues since November 14. The same thing also happened in 2022. However, this week, NASA said that engineers were finally able to get usable data about the health and status of its onboard engineering systems.

Slow Work

Fixing Voyager 1 has been slow work. It’s currently over 15 billion miles (24 billion kilometers) from Earth, which means a radio message takes about 22.5 hours to reach it—and the same again to receive an answer.

The problem appears to have been its flight data subsystem, one of one of the spacecraft’s three onboard computers. Its job is to package the science and engineering data before it’s sent to Earth. Since the computer chip that stores its memory and some of its code is broken, engineers had to re-insert that code into a new location.

300x250x1

Next up for engineers at NASA’s Jet Propulsion Laboratory in California is to adjust other parts of the FDS software so Voyager 1 can return to sending science data.

Beyond The ‘Heliopause’

The longest-running and most distant spacecraft in history, Voyager 1, was launched on September 5, 1977, while its twin spacecraft, Voyager 2, was launched a little earlier on August 20, 1977. Voyager 2—now 12 billion miles away and traveling more slowly—continues to operate normally.

Both are now beyond what astronomers call the heliopause—a protective bubble of particles and magnetic fields created by the sun, which is thought to represent the sun’s farthest influence. Voyager 1 got to the heliopause in 2012 and Voyager 2 in 2018.

Pale Blue Dot

Since their launch from Cape Canaveral, Florida, aboard Titan-Centaur rockets, Voyager 1 and Voyager 2 have had glittering careers. Both photographed Jupiter and Saturn in 1979 and 1980 before going their separate ways. Voyager 1 could have visited Pluto, but that was sacrificed so scientists could get images of Saturn’s moon, Titan, a maneuver that made it impossible for it to reach any other body in the solar system. Meanwhile, Voyager 2 took slingshots around the planets to also image Uranus in 1986 and Neptune in 1989—the only spacecraft ever to image the two outer planets.

On February 14, 1990, when 3.7 billion miles from Earth, Voyager 1 turned its cameras back towards the sun and took an image that included our planet as “a mote of dust suspended in a sunbeam.” Known as the “Pale Blue Dot,” it’s one of the most famous photos ever taken. It was remastered in 2019.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

NASA hears from Voyager 1, the most distant spacecraft from Earth, after months of quiet

Published

 on

 

CAPE CANAVERAL, Fla. (AP) – NASA has finally heard back from Voyager 1 again in a way that makes sense.

The most distant spacecraft from Earth stopped sending back understandable data last November. Flight controllers traced the blank communication to a bad computer chip and rearranged the spacecraft’s coding to work around the trouble.

NASA’s Jet Propulsion Laboratory in Southern California declared success after receiving good engineering updates late last week. The team is still working to restore transmission of the science data.

300x250x1

It takes 22 1/2 hours to send a signal to Voyager 1, more than 15 billion miles (24 billion kilometers) away in interstellar space. The signal travel time is double that for a round trip.

Contact was never lost, rather it was like making a phone call where you can’t hear the person on the other end, a JPL spokeswoman said Tuesday.

Launched in 1977 to study Jupiter and Saturn, Voyager 1 has been exploring interstellar space – the space between star systems – since 2012. Its twin, Voyager 2, is 12.6 billion miles (20 billion kilometers) away and still working fine.

 

728x90x4

Source link

Continue Reading

Trending