Connect with us


Review: Mythos 3D-Printed Titanium Stem is My Kind of Excess –



We sometimes joke about reviewing stems because, well, let’s be honest – as long as they hold onto the handlebar and steerer, they’re usually not that interesting. Unless we’re talking about Mythos’ £250 IXO stem, that is. Pronounced “icksoh” and looking like something from H.R. Giger’s catalog of bike parts, the IXO is manufactured via a 3D-printing process and the result is a see-through stem that Mythos says is both light and strong.

The IXO comes in 40mm and 50mm lengths, both with zero rise, a 35mm handlebar clamp, and a 38mm stack height. Claimed weight is 136 grams, but the IXO they sent me actually ended up being a bit lighter at 127 grams.

Mythos IXO details


• 3D-Printed titanium
• Lengths: 40mm, 50mm
• Rise: 0mm
• Handlebar clamp: 35mm only
• Stack height: 38mm
• Material: Aerospace-grade titanium (Ti6Al4V)
• Weight: From 136g (including hardware)
• MSRP: £250 (including UK VAT)
• More info:

Electron beam melting & vacuums

If you hadn’t heard of Mythos before, there’s a good chance you’ve never heard of their parent company, Metron, who has been making ultra-high-end components for years, mostly in the skinny tire world. The IXO is their first mountain bike stem and it’s manufactured via a process called electron beam melting which does exactly what it sounds like. EBM is similar to the more common Selective Laser Melting in that both ‘grow’ the component via powder, but while SLM uses “normal” lasers, EBM uses a beam of electrons in a vacuum environment.

If you want to make your bike parts via EBM, all you need is a special gun that shoots out a beam of electrons from a super-heated tungsten filament at around half the speed of light, as well as a barrel or two of aerospace-grade titanium and a hell of a lot of know-how. Mythos is doing that at their Derbyshire facility in the UK, the same place where they manufacture their equally crazy-looking Elix stem that’s even more expensive. After the stem is grown, its clamping surfaces are machined down to hold onto a steerer tube and a 35mm handlebar, and titanium hardware is used because of course it is.

Wondering why you can see through the IXO? Mythos says that they employ FEA (Finite Element Analysis) and CAD to figure out exactly where material needs to be and, as you can probably tell, where it doesn’t need to be. The 3D-printed result is an alien-looking shape that Mythos says exceeds the 200,000-cycle test program at ISO-specified forces while also being stiffer under both bending and torsional forces than a traditional stem.

Alien looks, normal performance

The first thing I noticed about the IXO stem is that it looks a bit rough, especially in a few spots where the surface seems inconsistent. It turns out that this is a byproduct of the manufacturing process and has no effect on its strength or rigidity, Mythos said, even if it does seem odd compared to the forged and machined aluminum stems we’re used to. “Many people believe that 3D printing produces a lower grade material, but EBM titanium actually matches or beats the material properties achieved by traditional manufacturing processes, meeting or exceeding all requirements of the relevant ASTM and ISO standards for Ti6Al4V (ASTM 1107, ASTM F1472, AMS 4999 and ISO 5832-3),” Mythos told me. So why not give the stem a smoother finish? Matthews explains: “Due to titanium being exceptionally tough, it’s extremely difficult to remove material evenly to produce a smooth or polished finish, and surface finishing the visible interior of the stem is incredibly difficult. This is why we decided on the raw as-printed finish. Plus, what’s the point of 3D-printing something and then making it look like it’s made with some boring old traditional manufacturing process?

There are plenty of boring black stems to choose from and all of them cost a lot less (and some weigh less) than the IXO, but Mythos isn’t trying to sell thousands of these things anyway. Personally, I love how it looks, especially on a black bike with a black handlebar, but I do have a soft spot for anything weird.

Forgetting about the price for a moment, are you a fan of the IXO’s lines or would you prefer something a little more normal?

Installation is like any other stem; it should sit a few millimeters proud of the steerer tube, and it uses a no-gap faceplate and the same 5Nm of torque for all six of its titanium M5x0.8 x 14mm bolts. The steerer clamp tolerances are a bit tighter than other stems I’ve used and it needed a good push to slide down onto the tube (no, there were no burrs), but it all went together as intended. You’ll certainly want to use a torque wrench for your fancy stem and read the instructions before picking up any tools.

The stem that the IXO replaced was a standard no-frills aluminum thing that definitely wasn’t doing anything wrong, but the difference on the trail between it and the 3D-printed titanium Mythos unit was… Not at all noticeable, of course. What the hell did you expect? I know that Mythos says the IXO is, “16% stiffer in torsion, and 11% stiffer in bending, when tested side-by-side with an equivalent alloy stem,” but I’ll never feel that while riding my bike because it’s not like any 40mm stem a soft noodle to begin with. I’m not saying that it isn’t stiffer, only that I can’t tell the difference, even when I clamp the front wheel between my knees while trying to twist and turn the handlebar in my faux-science test.

So it’s not a game-changer, but it also didn’t do anything wrong while I used it, never creaking, groaning, or slipping, as you’d hope for such a high-end component. One thing to note, however, is that riders who’ve had stems take core samples from their knees might prefer a smoother backside to the steerer clamp.

If you were hoping for a groundbreaking leap forward in stem performance, this ain’t it. The IXO does nothing wrong but it’s also not going to change your riding in any way, which is pretty much what I expected. That said, if you’re interested in the technology behind the stem and like how it looks, which describes me, I don’t think it’s all that crazy to consider given the other things we spend our money on.


+ 3D-printing titanium is cool AF
+ Polarizing looks


Price to performance ratio
There are lighter and less expensive stems
Polarizing looks

Pinkbike’s Take

I’ll admit that I don’t really care if the IXO is noticeably better or not than an $80 stem because I don’t think that’s what it’s about. If you want tangible performance gains, spend your money on tires, wheels, geometry, suspension, or lessons, not an expensive stem with an interesting backstory. Instead, think of the IXO as a demonstration of technology usually reserved for hyper-cars, aerospace, and the medical field.

No, I don’t see myself buying a £250 stem, but the unrepentant tech dork in me absolutely loves the idea of a 3D-printed titanium anything and how it looks on my bike. Are you into it, or do you prefer a different kind of excess?

Mike Levy

Adblock test (Why?)


Source link

Continue Reading


Ice Age Squirrel Found in Canada! » Expat Guide Turkey – Expat Guide Turkey



The remains of an Ice Age squirrel that was mummified to death during hibernation some 30,000 years ago have been found in Canada.

The 30,000-year-old animal found in the Klondike goldfields in 2018 will soon be on display in Whitehorse, Northern Canada.

Yukon paleontologists this week unveiled another unusual find from the gold fields near Dawson City: an Arctic squirrel that curled up and mummified as if it died during hibernation during the Ice Age.


A Squirrel Mummy Found by Yukon Paleontologists at the Gold Field near Dawson City

The Ice Age squirrel was actually found a few years ago, but its announcement is now being made as the government is preparing the dead rodent for display at the Yukon in Whitehorse.

At first glance, this mummified animal looks like nothing more than a dried up pile of brown fur and skin.

Intact Bone Structure Detected Inside the Remains

Yukon government paleontologist Grant Zazula says, “It’s hardly recognizable until you see the tiny hands and claws, a little tail, and then the ears.” says.

“I’m always examining bones and these are very exciting. But when you see a perfectly preserved animal, especially if it’s 30,000 years old and you can see its face, its skin, its fur, it’s really special.”

Adblock test (Why?)


Source link

Continue Reading


Apr 1: Tyrannosaur lips, bald eagles dine on beef, saving the orbital environment and more… –



Quirks and Quarks54:02Tyrannosaur lips, bald eagles dine on beef, saving the orbital environment, how your fingerprints are built and how humans run on electricity

On this week’s episode of Quirks & Quarks with Bob McDonald:


Tyrannosaurus rex had lips covering its terrifying teeth

Quirks and Quarks8:33Tyrannosaurus rex had lips covering its terrifying teeth

Many depictions of the iconic Tyrannosaurus rex show the dinosaur’s huge teeth as constantly exposed in a crocodilian smile. But a new study published in the journal Science concludes that theropod dinosaurs like the T. rex likely had scaly, lizard-like lips that covered their teeth completely when the dinosaur’s mouth was closed. Canadian paleontologist Dr. Thomas Cullen, a professor at Auburn University, and his co-authors analyzed wear patterns on tooth enamel of the dinosaurs, as well as jaw sizes, and compared them to modern-day animals. He said the T. rex mouth would have likely been most similar to that of a Komodo dragon.

Scientists and artists have developed two principal models of predatory dinosaur facial appearances: crocodylian-like lipless jaws or a lizard-like lipped mouth. New data suggests that the latter model, lizard-like lips, applies to most, or all, predatory dinosaur species. (Mark P. Witton)

Eagles are eating cows instead of salmon – and farmers are happy

Quirks and Quarks7:59Eagles are eating cows instead of salmon – and farmers are happy

In the Pacific Northwest of the U.S., bald eagles, which have historically fed on the carcasses of spawning chum salmon, have run short of their traditional food due to climate change and other factors. But a new study in the journal Ecosphere by Ethan Duvall, a PhD student in ecology at Cornell University, indicates the eagles have moved inland and are now scavenging cattle who have died on dairy farms. Farmers, it turns out, are happy with this, as it solves a troubling disposal problem, and because the eagles also displace rodents and other birds that do harm to the farms.

A bald eagle in flight against clouds in the blue sky
Bald eagles have shifted their diet from chum salmon carcasses to the carcasses of dairy cows in the northwestern U.S. (NICK BALACHANOFFF)

Inspired by the High Seas treaty, scientists are calling for the protection of space

Quirks and Quarks7:47Inspired by the High Seas treaty, scientists are calling for the protection of space

In early March, nearly 200 United Nations member countries agreed to the first-ever treaty to protect the world’s oceans. Imogen Napper, a marine biologist at the University of Plymouth in England, and a group of colleagues are calling for a similar legally binding treaty to protect the Earth’s orbit from exploitation by the ever-growing global space industry. Their concerns were put forward in a letter in the journal Science.

A woman looks up into a starry sky with a beam of light coming from her headband light
Marine biologist Imogen Napper has turned her attention from ocean plastic pollution to protecting the Earth’s orbit from space debris. (Eleanor Burfit)

Arches, loops and whorls — how your unique fingerprints are made

Quirks and Quarks7:40Arches, loops and whorls — how your unique fingerprints are made

There are eight billion people in the world, each with a unique pattern of ridges on our fingertips. Now, scientists have discovered that the process by which these intricate and complex patterns arise is similar to how animals get their spots or stripes. Duelling genetic and chemical signals during fetal development give rise to changes in the ridges and spaces between them that cover our fingertips. Denis Headon, a geneticist from the University of Edinburgh, traced how this interplay results in the complex whorls, loops and arches that make up our fingerprints. His research was published in the journal Cell.

A computer monitor on a black desk in an ambiently lit room has a giant fingerprint blown up on it taking up the entire screen.
A fingerprint is enlarged for examination at the US Homeland Security Investigation Forensic Laboratory in Tyson Corner, Virginia. A new study describes how our fingerprints get their unique patterns. (Paul J. Richards/AFP/Getty Images)

Humans are fueled by food — but we run on electricity

Quirks and Quarks19:31Humans are fueled by food — but we run on electricity

Every living cell works as a battery, with the ability to respond to and send out electrical signals. Science and technology journalist, Sally Adee, became fascinated with this realization after participating in an experiment in which a gentle electrical current, delivered to her brain, gave her the abilities of an expert sharpshooter. Bob McDonald speaks with her about her new book, We Are Electric: Inside the 200-Year Hunt for Our Body’s Bioelectric Code, and What the Future Holds. In it, she explores how much our biology — from our bodies’ ability to heal to the higher order processes of human thought — works through electricity.

Someone's hand can be seen holding a multitude of colourful wires emanating from the electrodes in a cap that he's wearing as he sits inside a makeshift cockpit.
A man holds electrodes set up on the head of Swiss scientist-adventurer and pilot Bertrand Piccard that will monitor his electrical brain waves prior to a non-stop 72 hours simulation test flight in 2013. (Fabrice Coffrini/AFP/Getty Images)

Adblock test (Why?)


Source link

Continue Reading


Meet the Canadian astronauts up for a seat on the Artemis II mission to the moon



This Sunday, NASA and the Canadian Space Agency (CSA) will announce the four astronauts that will be blasting off to fly around the moon for the Artemis II mission, one of whom will be a Canadian astronaut.

The Artemis II mission will be the first crewed mission to orbit the moon in half a century, and the inclusion of a Canadian astronaut on the mission will make Canada the second country to have an astronaut fly around the moon.

In November 2024, NASA’s Kennedy Space Center in Florida will launch the four astronauts into space for the Artemis II mission. They will pilot the Orion spacecraft around the Earth and then around the moon before returning home.

It’s the second step of a project that started last year with the unmanned Artemis I mission. The Artemis missions help to test the launch system and the spacecraft itself. The end goal is for scientists to construct a Lunar Gateway at the moon — a space station that could serve as a jumping off point for further deep space exploration.


A trailer for the crew announcement was posted by NASA on Wednesday.

There are currently four active Canadian astronauts, but we won’t know until Sunday who will be the first Canadian astronaut to fly around the moon.


Joshua Kutryk

Kutryk was born in Fort Saskatchewan, Alberta and grew up on a cattle farm in eastern Alberta. He is a member of the Canadian Armed Forces, and has been deployed in Libya and Afghanistan in the past.

He worked as an experimental test pilot and fighter pilot in Cold Lake, Alberta before he was recruited by the CSA. He worked on numerous test flight projects as well as on improving the safety of fighter jets such as the CF-18.

Kutryk made it to the top 16 candidates for the CSA in 2009, but wasn’t selected until CSA’s 2017 recruitment campaign.

He obtained the official title of astronaut in January 2020.

Jennifer Sidey-Gibbons

Sidey-Gibbons comes from Calgary, Alberta, and first worked with the CSA while studying mechanical engineering at McGill University, where she conducted research on flame propagation in microgravity in collaboration with the agency.

Before joining CSA, she lived and worked in the U.K. as an assistant professor in the Department of Engineering at the University of Cambridge. Her research there focused on how to develop low-emission combusted for gas turbine engines.

She was selected by the CSA in 2017 as a recruit along with Kutryk, and obtained the official title of astronaut in January 2020.

Jeremy Hansen

Hansen was born in London, Ontario and spent his childhood first on a farm near Ailsa Craig, Ontario, and then Ingersoll, Ontario. He is married with three children.

By age 17, he had already obtained glider and private pilot licences through the Air Cadet Program. He is a member of the Canadian Armed Forces and served as a CF-18 fighter pilot before becoming an astronaut.

Hansen graduated as an astronaut in 2011, after being selected as one of two recruits for the CSA in 2009. He currently represents the CSA at NASA and works at the Mission Control Center, serving as the point of connection between the ground and the International Space Station (ISS). He also helps to train astronauts at NASA, the first Canadian to do so.

David Saint-Jacques

Saint-Jacques grew up in Saint-Lambert, Quebec, near Montreal, and is married with three children.

Before joining the CSA, he worked as a medical doctor in Puvirnituq, Nunavik, an Inuit community in northern Quebec. He also works as an adjunct professor of family medicine at McGill University. As a biomedical engineer, he has worked in France and Hungary, and helped to develop optics systems for telescopes and arrays used at observatories in Japan, Hawaii and the Canary Islands.

He was selected as a recruit in 2009 by the CSA and graduated in 2011 from the NASA astronaut program. He has since worked with the Robotics Branch of the NASA Astronaut Office, as a support astronaut for various ISS missions and as the mission control radio operator for a number of resupply missions for the ISS.

In December 2018, Saint-Jacques flew to the ISS to complete a 204-day mission, which is the longest mission any Canadian astronaut has carried out in space to date. During this time, he became the fourth CSA astronaut to conduct a spacewalk and the first CSA astronaut to catch a visiting spacecraft using the Canadarm2.



Source link

Continue Reading