Connect with us

Science

Russia launches lab module to International Space Station – Weyburn Review

Published

 on


MOSCOW — Russia on Wednesday successfully launched a long-delayed lab module for the International Space Station that is intended to provide more room for scientific experiments and space for the crew.

A Proton-M booster rocket carrying the Nauka module lifted off as scheduled at 7:58 pm local time (14:58 GMT) from the Russian space launch facility in Baikonur, Kazakhstan. The navigational antennas and solar arrays deployed properly after a flawless launch that set the module on an eight-day journey to the orbiting outpost.

article continues below

After a series of manoeuvrs, the 20-metric-ton (22-ton) module is set to dock at the International Space Station in automatic mode on July 29.

The launch of Nauka, also called the Multipurpose Laboratory Module, had been repeatedly delayed because of technical problems. It was initially scheduled to go up in 2007.

In 2013, experts found contamination in its fuel system, resulting in a long and costly replacement. Other Nauka systems also underwent modernization or repairs.

A launch previously set for July 15 was postponed until Wednesday due to the need to fix unspecified flaws.

Before Nauka docks at the station, one of the older Russian modules, the Pirs spacewalking compartment, will need to be removed and scrapped to free up room for the new module. Russian space controllers plan to perform the manoeuvr Friday after they check and confirm that Nauka’s systems operate properly and the module is ready for docking.

Russian crewmembers on the station have done two spacewalks to connect cables in preparation for Nauka’s arrival. Once Nauka docks at the station, it will require a long series of manuevers, including up to 11 spacewalks beginning in early September, to prepare it for operation.

The International Space Station is currently operated by NASA astronauts Mark Vande Hei, Shane Kimbrough and Megan McArthur; Oleg Novitsky and Pyotr Dubrov of Russia’s Roscosmos space corporation; Japan Aerospace Exploration Agency astronaut Akihiko Hoshide and European Space Agency astronaut Thomas Pesquet.

In 1998, Russia launched the station’s first module, Zarya, which was followed in 2000 by another big module, Zvezda, and three smaller modules in the following years. The last of them, Rassvet, arrived at the station in 2010.

Adblock test (Why?)



Source link

Continue Reading

Science

NASA, Boeing launch Starliner to the ISS: How to watch test flight live – CNET

Published

 on


Boeing CST-100 Starliner spacecraft sits atop a ULA Atlas V rocket in July 2021.


Boeing/John Grant

Boeing is set to relaunch its Starliner crew capsule for a second attempt at docking with the International Space Station this Tuesday, Aug. 3 (there won’t be any humans aboard). Boeing’s first try in late 2019 failed to reach the ISS but landed safely back on Earth. 

The mission was originally scheduled to take off Friday, but it’s now aiming for Tuesday after an unexpected issue last Thursday with an ISS module firing its thrusters shortly after docking with the station. 

“The International Space Station team will use the time to continue working checkouts of the newly arrived Roscosmos Nauka multipurpose laboratory module (MLM) and to ensure the station will be ready for Starliner’s arrival,” said NASA in a statement.

Software defects and a communications link problem led to a premature end to the original Boeing test flight in 2019, though the CST-100 Starliner capsule landed safely back on Earth. The upcoming Orbital Flight Test-2 (OFT-2) mission is a chance for Boeing to thoroughly vet its hardware and software before a crew of three American astronauts flies on Starliner.

Both Boeing and SpaceX are part of NASA’s Commercial Crew Program, which is all about sending astronauts to the ISS from American soil. SpaceX has now delivered 10 astronauts to the ISS, and Boeing would like to catch up. First, it’ll need to show that its Starliner can safely reach the ISS and return to Earth.

NASA will livestream the launch, which is scheduled to occur at 10:20 a.m. PT (1:20 p.m. ET) on Tuesday Aug. 3. Coverage is expected to begin at 9:30 a.m. PT. 

Starliner will lift off on a United Launch Alliance (ULA) Atlas V rocket. The capsule will be packed with around 400 pounds of crew supplies and cargo. If all goes well, it’ll dock with the space station about 24 hours later, on Wednesday Aug. 4. Docking will also be covered live by NASA’s NASA TV.

ULA shared some scenic photos from the launch site on Monday as it prepares for liftoff. 

Starliner will spend between five and 10 days at the ISS before bringing research samples back to Earth. Boeing will aim to bring the spacecraft back for a gentle parachute landing in the desert of New Mexico.

“OFT-2 will provide valuable data that will help NASA certify Boeing’s crew transportation system to carry astronauts to and from the space station,” NASA said in a statement July 22 after successfully concluding a flight readiness review.

The mission is a key step for NASA’s plans to run regular crewed launches from the US, ending its reliance on Russian Soyuz spacecraft. If all goes well, the first crewed mission, Boe-CFT, could launch in the next six months.

Follow CNET’s 2021 Space Calendar to stay up to date with all the latest space news this year. You can even add it to your own Google Calendar.    

Adblock test (Why?)



Source link

Continue Reading

Science

Meteor Shower 2021: Why There Are Only A Few Precious Hours In 2021 When You Can Reliably See ‘Shooting Stars’ – Forbes

Published

 on


Have you ever seen a “shooting star?” If you haven’t, you’ll no doubt have read articles imploring you to go outside and experience a “shower” of meteors. 

There’s no such thing as a “meteor shower.” 

Meteoroids don’t behave like that. “Shooting stars” are caused by Earth’s atmosphere colliding with clumps of dust left along its orbital path by a passing comet. They look like streaks and they last around a second, depending on the “shower” in question.

“Shooting stars” are sudden events that can happen anywhere in the night sky, but they’re sporadic. They rarely happen together. For instance, you might see one out of the corner of your eye and, five minutes later, see another one in a completely different part of the sky. Many of them you will miss. There are never two or three—or more—“raining down” at the same time, as composite photographs would suggest.

Besides, when you read that a “meteor shower” like the Lyrids, Orionids or Geminids could have “up to 150 shooting stars per hour,” what it really means that it might be possible to see that many (the so-called zenithal hourly rate or ZHR) in perfect conditions. That scenario is, in practice, impossible to achieve—you would need to be observing the entire night sky constantly, for many hours either side of the absolute “peak” of activity, and in super-dark skies. 

However, the biggest factor that determines what you’re likely to see—and one many meteor shower-promoters fail to point out—is the effect of Moon and moonlight.

If there’s a first quarter Moon or anything brighter, particularly a full Moon, in the sky during the peak night(s) of a meteor shower, you can forget seeing anything other than the very brightest of “shooting stars.” And they’re very rare. 

If the Moon is big and bright then, in effect, you’ll be observing from under a heavily light-polluted night sky even if you’ve gone to a dark sky destination. 

So which meteor showers are the ones to go for in 2021? There are going to be three meteor showers in 2021 that will occur under near-ideal conditions. 

The bad news?

The first (and by far the best) one isn’t until August 2021.

The good news?

It’s the Perseids, arguably the most famous and easiest meteor shower to observe in the northern hemisphere … largely because it occurs in the middle of summer when it’s easiest to be outdoors at night. 

The best three meteor showers in 2021, these will be best observed after midnight, with the exception of the Draconids, which can be observed right after dark. 

1. Perseid meteor shower 2021

When: Thursday/Friday, August 12/13, 2021

Moon phase: 23%-lit crescent Moon

ZHR: 110

2. Draconid meteor shower 2021

When: Friday/Saturday, October 8/9, 2021

Moon phase: 10%-lit crescent Moon

ZHR: 10

3. South Taurid meteor shower 2021

When: Thursday/Friday, November 4/5, 2021

Moon phase: 0.1%-lit crescent Moon

ZHR: 10

Wishing you clear skies and wide eyes.

Adblock test (Why?)



Source link

Continue Reading

Science

Lake Huron sinkhole surprise: The rise of oxygen on early Earth linked to changing planetary rotation rate – Phys.org

Published

 on


A scuba diver observes the purple, white and green microbes covering rocks in Lake Huron’s Middle Island Sinkhole. Credit: Phil Hartmeyer, NOAA Thunder Bay National Marine Sanctuary.

The rise of oxygen levels early in Earth’s history paved the way for the spectacular diversity of animal life. But for decades, scientists have struggled to explain the factors that controlled this gradual and stepwise process, which unfolded over nearly 2 billion years.

Now an international research team is proposing that increasing on the early Earth—the spinning of the young planet gradually slowed over time, making the days longer—may have boosted the amount of oxygen released by photosynthetic cyanobacteria, thereby shaping the timing of Earth’s oxygenation.

Their conclusion was inspired by a study of present-day microbial communities growing under extreme conditions at the bottom of a submerged Lake Huron sinkhole, 80 feet below the water’s surface. The water in the Middle Island Sinkhole is rich in sulfur and low in oxygen, and the brightly colored bacteria that thrive there are considered good analogs for the single-celled organisms that formed mat-like colonies billions of years ago, carpeting both land and seafloor surfaces.

The researchers show that longer day length increases the amount of oxygen released by photosynthetic microbial mats. That finding, in turn, points to a previously unconsidered link between Earth’s oxygenation history and its . While the Earth now spins on its axis once every 24 hours, day length was possibly as brief as 6 hours during the planet’s infancy.

The team’s findings are scheduled for publication Aug. 2 in the journal Nature Geoscience.

Lead authors are Judith Klatt of the Max Planck Institute for Marine Microbiology and Arjun Chennu of the Leibniz Centre for Tropical Marine Research. Klatt is a former postdoctoral researcher in the lab of University of Michigan geomicrobiologist Gregory Dick, who is one of the study’s two corresponding authors. The other co-authors are from U-M and Grand Valley State University.

“An enduring question in the Earth sciences has been how did Earth’s atmosphere get its oxygen, and what factors controlled when this oxygenation took place,” Dick said from the deck of the R/V Storm, a 50-foot NOAA research vessel that carried a team of scientists and scuba divers on a sample-collection trip from the town of Alpena, Michigan, to the Middle Island Sinkhole, several miles offshore.

“Our research suggests that the rate at which the Earth is spinning—in other words, its day length—may have had an important effect on the pattern and timing of Earth’s oxygenation,” said Dick, a professor in the U-M Department of Earth and Environmental Sciences.

The researchers simulated the gradual slowing of Earth’s rotation rate and showed that longer days would have boosted the amount of oxygen released by early cyanobacterial mats in a manner that helps explain the planet’s two great oxygenation events.

[embedded content]

The project began when co-author Brian Arbic, a physical oceanographer in the U-M Department of Earth and Environmental Sciences, heard a public lecture about Klatt’s work and noted that day length changes could play a role, over geological time, in the photosynthesis story that Dick’s lab was developing.

Cyanobacteria get a bad rap these days because they are the main culprits behind the unsightly and toxic algal blooms that plague Lake Erie and other water bodies around the world.

But these microbes, formerly known as blue-green algae, have been around for billions of years and were the first organisms to figure out how to capture energy from sunlight and use it to produce organic compounds through photosynthesis—releasing oxygen as a byproduct.

Masses of these simple organisms living in primeval seas are credited with releasing oxygen that later allowed for the emergence of multicellular animals. The planet was slowly transformed from one with vanishingly small amounts of oxygen to present-day atmospheric levels of around 21%.

At the Middle Island Sinkhole in Lake Huron, purple oxygen-producing cyanobacteria compete with white sulfur-oxidizing bacteria that use sulfur, not sunlight, as their main energy source.

In a microbial dance repeated daily at the bottom of the Middle Island Sinkhole, filmy sheets of purple and white microbes jockey for position as the day progresses and as environmental conditions slowly shift. The white sulfur-eating bacteria physically cover the purple cyanobacteria in the morning and evening, blocking their access to sunlight and preventing them from carrying out oxygen-producing photosynthesis.

But when sunlight levels increase to a critical threshold, the sulfur-oxidizing bacteria migrate back down below the photosynthetic cyanobacteria, enabling them to start producing oxygen.

New theory: Earth's longer days kick-started oxygen growth
This June 19, 2019 photo provided by NOAA Thunder Bay National Marine Sanctuary shows purple microbial mats in the Middle Island Sinkhole in Lake Huron, Mich. Small hills and “fingers” like this one in the mats are caused by gases like methane and hydrogen sulfide bubbling up beneath them. Feel like days are just getting longer? They are and it’s a good thing because we wouldn’t have much to breathe if they weren’t, according to a new explanation for how Earth’s oxygen rich atmosphere may have developed because of Earth’s rotation slowing. Scientists provided evidence for this new hypothesis by lab testing gooey smelly purple bacteria from a deep sinkhole in Lake Huron. Credit: Phil Hartmeyer/NOAA Thunder Bay National Marine Sanctuary

The vertical migration of sulfur-oxidizing bacteria has been observed before. What’s new is that the authors of the Nature Geoscience study are the first to link these microbial movements, and the resultant rates of oxygen production, to changing day length throughout Earth’s history.

“Two groups of microbes in the Middle Island Sinkhole mats compete for the uppermost position, with sulfur-oxidizing bacteria sometimes shading the photosynthetically active cyanobacteria,” Klatt said while processing a core sample from Middle Island Sinkhole microbial mats in an Alpena laboratory. “It’s possible that a similar type of competition between microbes contributed to the delay in oxygen production on the early Earth.”

A key to understanding the proposed link between changing day length and Earth’s oxygenation is that longer days extend the afternoon high-light period, allowing photosynthetic cyanobacteria to crank out more oxygen.

“The idea is that with a shorter day length and shorter window for high-light conditions in the afternoon, those white sulfur-eating bacteria would be on top of the photosynthetic bacteria for larger portions of the day, limiting oxygen production,” Dick said as the boat rocked on choppy waters, moored a couple hundred yards from Middle Island.

The present-day Lake Huron microbes are believed to be good analogs for ancient organisms in part because the extreme environment at the bottom of the Middle Island Sinkhole likely resembles the harsh conditions that prevailed in the shallow seas of early Earth.

Lake Huron is underlain by 400-million-year-old limestone, dolomite and gypsum bedrock that formed from the saltwater seas that once covered the continent. Over time, the movement of groundwater dissolved some of that bedrock, forming caves and cracks that later collapsed to create both on-land and submerged sinkholes near Alpena.

Cold, oxygen-poor, sulfur-rich groundwater seeps into the bottom of the 300-foot-diameter Middle Island Sinkhole today, driving away most plants and animals but creating an ideal home for certain specialized microbes.

Dick’s team, in collaboration with co-author Bopaiah Biddanda of the Annis Water Resources Institute at Grand Valley State University, has been studying the microbial mats on the floor of Middle Island Sinkhole for several years, using a variety of techniques. With the help of scuba divers from NOAA’s Thunder Bay National Marine Sanctuary—which is best known for its shipwrecks but is also home to the Middle Island Sinkhole and several others like it—the researchers deployed instruments to the lake floor to study the chemistry and biology there.

They also brought mat samples to the lab to conduct experiments under controlled conditions.

Klatt hypothesized that the link between day length and oxygen release can be generalized to any given mat ecosystem, based on the physics of oxygen transport. She teamed up with Chennu to conduct detailed modeling studies to relate microbial mat processes to Earth-scale patterns over geological timescales.

The modeling studies revealed that day length does, in fact, shape oxygen release from the mats.

“Simply speaking, there is just less time for the oxygen to leave the mat in shorter days,” Klatt said.

This led the researchers to posit a possible link between longer day lengths and increasing atmospheric oxygen levels. The models show that this proposed mechanism might help explain the distinctive stepwise pattern of Earth’s oxygenation, as well as the persistence of low-oxygen periods through most of the planet’s history.

Throughout most of Earth’s history, atmospheric oxygen was only sparsely available and is believed to have increased in two broad steps. The Great Oxidation Event occurred about 2.4 billion years ago and has generally been credited to the earliest photosynthesizing cyanobacteria. Nearly 2 billion years later a second surge in , known as the Neoproterozoic Oxygenation Event, occurred.

Earth’s rotation rate has been slowly decreasing since the planet formed about 4.6 billion years ago due to the relentless tug of the moon’s gravity, which creates tidal friction.


Explore further

Researchers find oxygen spike coincided with ancient global extinction


More information:
Possible link between Earth’s rotation rate and oxygenation, Nature Geoscience (2021). DOI: 10.1038/s41561-021-00784-3 , www.nature.com/articles/s41561-021-00784-3

Citation:
Lake Huron sinkhole surprise: The rise of oxygen on early Earth linked to changing planetary rotation rate (2021, August 2)
retrieved 2 August 2021
from https://phys.org/news/2021-08-lake-huron-sinkhole-oxygen-early.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Adblock test (Why?)



Source link

Continue Reading

Trending