Connect with us

Science

Russian space officials try to blame NASA astronaut for Soyuz air leak in 2018: report – Space.com

Published

 on


A closeup image of the suspected drill hole that astronauts discovered in the Soyuz MS-09 spacecraft in 2018. (Image credit: NASA)

CAPE CANAVERAL, Fla. — NASA’s head of human spaceflight says the agency stands behind its astronauts following claims that a U.S. crewmember at the International Space Station sabotaged a Russian Soyuz spacecraft in 2018, causing an air leak at the orbiting laboratory. 

On Friday afternoon (Aug. 13), during a media teleconference about recent delays with Boeing’s Starliner spacecraft, NASA’s human spaceflight chief Kathy Lueders told reporters that the personal attacks against NASA astronaut and Expedition 56 flight engineer Serena Auñón-Chancellor were baseless. 

“Serena is an extremely well-respected crew member who has served her country and made invaluable contributions to the agency,” Lueders told reporters. “And I stand behind Serena — we stand behind Serena and her professional conduct and I did not find this accusation credible.”

Genius Dog 336 x 280 - Animated

Related: Space Station commander: It’s ‘absolutely a shame’ to suggest astronauts caused air leak

Lueders expressed those same sentiments on Twitter Friday afternoon, with NASA’s administrator, Senator Bill Nelson agreeing.: 

“I wholeheartedly agree with Kathy’s statement,” Nelson tweeted. “I fully support Serena and I will always stand behind our astronauts.”

Russian accusations

NASA leadership’s statements on Friday follow on the heels of accusations from an unnamed “high-ranking” official with Russia’s space agency made in the Russian news agency TASS. The agency claims that in 2018, Auñón-Chancellor had an emotional breakdown in space and then damaged a Russian Soyuz spacecraft that was docked at the station so that she could return to Earth early.

The article, published on Thursday (Aug. 12), responds to criticism from U.S. media in regards to the near-disastrous incident involving Russia’s Nauka science module and the International Space Station (ISS) earlier this month.

Related: Space station situation with Russia’s Nauka module misfire was more serious than stated

NASA astronaut Serena Auñón-Chancellor speaks at a bipartisan Congressional Caucus for Women’s Issues event on NASA’s Artemis lunar exploration program, at the Rayburn House Office Building in Washington, in September 2019.  (Image credit: Aubrey Gemignani/NASA)

In the TASS article, Russian journalist Mikhail Kotov interviews an anonymous official at Russia’s space agency, Roscosmos

The article is particularly troublesome because it not only names Auñón-Chancellor — the only female astronaut on station at the time — specifically, but it also reveals a medical condition she suffered on-orbit. (Typically NASA keeps all astronaut medical records and conditions private.) 

Auñón-Chancellor was treated upon her return to Earth for a deep vein thrombosis, also known as a blood clot, in the jugular vein of her neck. But Kotov implies that dealing with such a condition in space could spur her to want to leave the ISS prematurely, and therefore sabotage the spacecraft that brought her to the orbital outpost in an effort to return home ahead of schedule. 

Leaky Soyuz

On Aug. 29, 2018, ISS controllers at NASA’s Johnson Space Center in Houston noticed a slight pressure drop aboard the orbiting outpost. They notified the crew the next day, and the crew was able to trace the leak to a small hole in Russia’s Soyuz MS-09 spacecraft, which had docked to the space station in June with Auñón-Chancellor, European Space Agency astronaut Alexander Gerst and Russian cosmonaut Sergey Prokopyev.

Prokopyev, the commander of the Soyuz at the time, solved the problem by patching the 2-millimeter (0.08 inches) hole using epoxy and gauze. NASA officials stressed that the crew was never in any danger. 

Russian space officials decided to investigate the leak, determined to find out its cause. Shortly thereafter, Dmitry Rogozin — the head of Roscosmos — announced that the breach in the Soyuz wall was a drill hole. And according to Rogozin, the person who made the hole apparently had “a faltering hand,” citing nearby scuff marks that likely resulted when the drill slipped.

Russian officials went one step further insinuating that the unsteady hand was likely due to the culprit drilling in microgravity, meaning one of the crew was to blame — not the Russian engineers involved in the assembly and testing of the Soyuz spacecraft before launch down on Earth. 

Space Station astronauts repaired a minor leak in the Soyuz MS-09 spacecraft (left) on Aug. 30, 2018. A 2-millimeter hole in the orbital module, shown here, caused a slight pressure drop inside the orbiting laboratory. (Image credit: NASA/Space.com)

NASA officials knew the precise locations of the U.S. astronauts before the leak occurred and at the moment it began, thanks to space station surveillance. The video footage indicated that none of the U.S. astronauts on the station were near the Russian segment where the Soyuz vehicle was docked. But the Russians didn’t buy it. They were convinced that one of the crew sabotaged the Soyuz. 

The recent TASS article takes those claims one step further and insists that NASA video of the ISS could have been tampered with and that Russian officials were denied the chance to examine Russian tools and administer polygraphs, or lie detector tests, to the astronauts. 

But the TASS article seems to dismiss the most likely cause of the hole: human error on the ground. The problem most likely happened on Earth, before launch. This was something that Roscosmos was looking into but the agency has never definitively disclosed the results. 

Most likely a technician accidentally damaged the Soyuz spacecraft and then tried to cover up the error with a makeshift patch. That patch could have then become dislodged during flight or its time on-orbit after repeated exposure to extreme temperature differences as the station orbits the Earth.

Looking ahead

Related stories

Relations between the two space agencies have grown more strained over recent years, but NASA leadership is hopeful for a continued orbital partnership. 

Prior to the launch attempt of Boeing’s Starliner spacecraft on July 30, Nelson told Space.com that he applauded the long-standing relationship between the two agencies. “Terrestrially, we have enormous tensions with Russia, but in space we have cooperation.” 

Nelson also said that he expects Russia will continue to work with NASA to maintain the ISS and that he hopes to announce sometime soon that a cosmonaut will fly on an upcoming SpaceX Crew Dragon flight, something the agency has been trying to arrange for quite some time. 

Perhaps cosmonauts will make their U.S. commercial spaceflight debut with the SpaceX Crew-4 mission, currently slated to launch in2022, Nelson has said, but nothing is confirmed yet. 

Follow Amy Thompson on Twitter @astrogingersnap. Follow us on Twitter @Spacedotcom or Facebook.

Adblock test (Why?)



Source link

Continue Reading

Science

Giant mantle plume suggests Mars is more active than previously believed

Published

 on

Although most volcanic and tectonic activity on Mars occurred during the first 1.5 billion years of its geologic history, recent volcanism, tectonism, and active seismicity in Elysium Planitia reveal ongoing activity. However, this recent pulse in volcanism and tectonics is unexpected on a cooling Mars.

A new study by scientists from the University of Arizona presents multiple lines of evidence that reveal the presence of a giant active mantle plume on present-day Mars. The study challenges current views of Martian geodynamic evolution with a report on discovering an active mantle plume pushing the surface upward and causing earthquakes and volcanic eruptions.

Jeff Andrews-Hanna, an associate professor of planetary science at the LPL, said, “We have strong evidence for mantle plumes being active on Earth and Venus, but this isn’t expected on a small and supposedly cold world like Mars. Mars was most active 3 to 4 billion years ago, and the prevailing view is that the planet is essentially dead today.”

Adrien Broquet, a postdoctoral research associate at the UArizona Lunar and Planetary Laboratory, said, “A tremendous amount of volcanic activity early in the planet’s history built the tallest volcanoes in the solar system and blanketed most of the northern hemisphere in volcanic deposits. What little activity has occurred in recent history is typically attributed to passive processes on a cooling planet.”

Genius Dog 336 x 280 - Animated

The Elysium Planitia plain, located in the northern lowlands of Mars near the equator, caught the attention of scientists due to a startling level of activity. Elysium Planitia has undergone significant eruptions over the past 200 million years, in contrast to other volcanic zones on Mars that haven’t experienced significant activity in billions of years.

Andrews-Hanna said, “Previous work by our group found evidence in Elysium Planitia for the youngest volcanic eruption known on Mars. It created a small explosion of volcanic ash around 53,000 years ago, which in geologic time is essentially yesterday.”

The Cerberus Fossae, a series of young fissures that span more than 800 miles over the Martian surface, is the source of the volcanism in Elysium Planitia. Recently, the InSight team at NASA discovered that almost all marsquakes originate from this area. Although the young age of this volcanic and tectonic activity had been established, its root cause was still unknown.

Broquet said, “We know that Mars does not have plate tectonics, so we investigated whether the activity we see in the Cerberus Fossae region could be the result of a mantle plume.”

Artist’s impression of an active mantle plume – a large blob of warm and buoyant rock – rising from deep inside Mars and pushing up Elysium Planitia, a plain within the planet’s northern lowlands.Adrien Broquet & Audrey Lasbordes

The scientists discovered evidence of a similar series of events on Mars when they examined the features of Elysium Planitia. One of the highest places in Mars’ vast northern lowlands, the surface has been raised by more than a mile. The existence of a mantle plume is compatible with the uplift being supported from deep within the globe, according to analyses of minor fluctuations in the gravitational field.

Additional measurements supported the theory that something pushed the surface up after the craters formed by revealing that the floor of impact craters is inclined in the direction of the plume. Finally, when scientists used a tectonic model to the region, they discovered that the only explanation for the extension that created the Cerberus Fossae was the existence of a massive plume 2,500 miles wide.

Broquet said, “In terms of what you expect to see with an active mantle plume, Elysium Planitia is checking all the right boxes. The finding poses a challenge for models used by planetary scientists to study the thermal evolution of planets. This mantle plume has affected an area of Mars roughly equivalent to that of the continental United States. Future studies will have to find a way to account for a huge mantle plume that wasn’t expected to be there.”

“We used to think InSight landed in one of the most geologically boring regions on Mars – a nice flat surface that should roughly represent the planet’s lowlands. Instead, our study demonstrates that InSight landed right on top of an active plume head.”

“Having an active mantle plume on Mars today is a paradigm shift for our understanding of the planet’s geologic evolution, similar to when analyses of seismic measurements recorded during the Apollo era demonstrated the moon’s core to be molten.”

Scientists noted, “Their findings could also have implications for life on Mars. The studied region experienced floods of liquid water in its recent geologic past, though the cause has remained a mystery. The same heat from the plume fueling ongoing volcanic and seismic activity could also melt ice to make the floods – and drive chemical reactions that could sustain life deep underground.”

Andrews-Hanna said“Microbes on Earth flourish in environments like this, and that could be true on Mars, as well. The discovery goes beyond explaining the enigmatic seismic activity and resurgence in volcanic activity. Knowing that there is an active giant mantle plume underneath the Martian surface raises important questions regarding how the planet has evolved. We’re convinced that the future has more surprises in store.”

Journal Reference:

  1. Broquet, A., Andrews-Hanna, J.C. Geophysical evidence for an active mantle plume underneath Elysium Planitia on Mars. Nat Astron (2022). DOI: 10.1038/s41550-022-01836-3

Source link

Continue Reading

Science

NASA capsule flies over Apollo landing sites, heads home

Published

 on

CAPE CANAVERAL, Fla. –

NASA’s Orion capsule and its test dummies swooped one last time around the moon Monday, flying over a couple Apollo landing sites before heading home.

Orion will aim for a Pacific splashdown Sunday off San Diego, setting the stage for astronauts on the next flight in a couple years.

The capsule passed within 80 miles (130 kilometres) of the far side of the moon, using the lunar gravity as a slingshot for the 237,000-mile (380,000-kilometre) ride back to Earth. It spent a week in a wide, sweeping lunar orbit.

Genius Dog 336 x 280 - Animated

Once emerging from behind the moon and regaining communication with flight controllers in Houston, Orion beamed back photos of a close-up moon and a crescent Earth — Earthrise — in the distance.

“Orion now has its sights set on home,” said Mission Control commentator Sandra Jones.

The capsule also passed over the landing sites of Apollo 12 and 14. But at 1,200 miles (1,900 kilometres) up, it was too high to make out the descent stages of the lunar landers or anything else left behind by astronauts more than a half-century ago. During a similar flyover two weeks ago, it was too dark for pictures. This time, it was daylight.

Deputy chief flight director Zebulon Scoville said nearby craters and other geologic features would be visible in any pictures, but little else.

“It will be more of a tip of the hat and a historical nod to the past,” Scoville told reporters last week.

The three-week test flight has exceeded expectations so far, according to officials. But the biggest challenge still lies ahead: hitting the atmosphere at more than 30 times the speed of sound and surviving the fiery reentry.

Orion blasted off Nov. 16 on the debut flight of NASA’s most powerful rocket ever, the Space Launch System or SLS.

The next flight — as early as 2024 — will attempt to carry four astronauts around the moon. The third mission, targeted for 2025, will feature the first lunar landing by astronauts since the Apollo moon program ended 50 years ago this month.

Apollo 17 rocketed away Dec. 7, 1972, from NASA’s Kennedy Space Center, carrying Eugene Cernan, Harrison Schmitt and Ron Evans. Cernan and Schmitt spent three days on the lunar surface, the longest stay of the Apollo era, while Evans orbited the moon. Only Schmitt is still alive.

——

Source link

Continue Reading

Science

Using atomic clocks in space to solve dark matter mystery

Published

 on

A team of international scientists is proposing to send atomic clocks into space to detect and understand enigmatic dark matter.

Dark matter is a mystery that has plagued researchers for decades. This unknown essence represents 85% of all matter in the Universe, and although its effects can be observed, it has not been directly detected. Experts from the University of Delaware, the University of California, and the University of Tokyo are collaborating to solve this longstanding mystery by sending atomic clocks into space.

The research, ‘Direct detection of ultralight dark matter bound to the Sun with space quantum sensors,’ which is published in Nature Astronomy, plans to send two atomic clocks into the inner reaches of the solar system to search for ultralight dark matter that has wavelike properties that may affect the operation of the clocks.

What are atomic clocks?

Atomic clocks tell time by measuring the rapid oscillations of atoms and are already utilised in space to enable the Global Positioning System (GPS). In the future, space clocks could help navigate spacecraft and provide links to Earth-based cocks.

All clocks mark time by using some form of a repetitive process, such as a swinging pendulum. However, atomic clocks use laser technology to manipulate and measure the oscillations of atoms which are extremely fast. For example, a clock based on strontium atoms ticks 430 trillion times per second, and atomic clocks are exceedingly more precise than any mechanical devices.

Genius Dog 336 x 280 - Animated

Historically, atomic clocks can cover the size of a couple of tables, but recent advances in precision and portability mean that some atomic clocks can now fit into a van, with NASA’s Deep Space Atomic Clock being even smaller, at around the size of a toaster.

Nevertheless, different types of clocks, based on much higher frequencies, have been developed over the last 15 years, such as optical clocks that are orders of magnitude more precise and will not lose even a second of time over billions of years.

Marianna Safronova, a physicist at the University of Delaware, said: “We now have portable clocks, and it’s fun to think about how you would go about sending such high-precision clocks to space and establish what great things we can do.

“It is a beautiful synergy between a quantum expert and particle theorists, and we are working on new ideas at the intersection of these two fields.”

Unravelling the mysterious properties of dark matter

The proposed research would send space clocks closer to the Sun than Mercury – an area they believe there is more dark matter to detect. These include atomic, nuclear, and molecular clocks that are currently being developed and are otherwise known as quantum sensors.

Safronova explained: “This was inspired by the Parker Solar Probe, the ongoing NASA mission that sent a spacecraft closer to the Sun than any other spacecraft has gone before. It has nothing to do with quantum sensors or clocks, but it showed that you could send a satellite very close to the Sun, sensing new conditions and making discoveries. That is much closer to the Sun than what we are proposing here.”

The aim of the study is to investigate ultralight dark matter, which the researchers believe could make a huge halo-like region that is bound to the Sun. Ultralight dark matter could cause the energies of atoms to oscillate, which will change how the clock ticks, although this effect depends on the atoms the clock uses. The researchers then monitor the differences in the clocks to look for dark matter.

“It has very specific properties and is a very specific dark matter that is detectable by clocks. What is observable is the ratio of those two clock frequencies. That ratio should oscillate if such dark matter exists,” Safronova said.

She explained that nuclear clocks, which are based on nuclear energy levels rather than atomic energy levels, may be the best clock for this research. She is currently involved in a project to build a prototype funded by the European Research Council.

Source link

Continue Reading

Trending