Science on the back roads could help us prepare for solar storms (5 images) - TimminsToday | Canada News Media
Connect with us

Science

Science on the back roads could help us prepare for solar storms (5 images) – TimminsToday

Published

 on


There is science on the back roads and the new Solar Cycle 25 has begun.

The potential upswing in space weather will impact our lives and technology on Earth, as well as astronauts in space and a line of towers near Kapuskasing will play a role in understanding the effects.

The satellite-based economy is here and now, nearly all international banking, internet, television and communications are done by satellite.

Beyond the beauty of the Northern Lights, the space environment is extremely dangerous for the delicate electronic systems on every satellite. Conditions are particularly threatening during “magnetic storms” when astronauts are required to take shelter in the International Space Station and transpolar airline flights are diverted to avoid the dangerous radiation from space. These are storms that originate from the Sun and occur in space near Earth or in the Earth’s atmosphere

With the rising sophistication of our technologies and the number of people that use technology, vulnerability to space weather events has increased dramatically.

This unassuming bank of radar towers, located on Sylvain Road in Kitigan, 10 km east of Kapuskasing, are part of SuperDARN which stands for Super Dual Aurora Radar Network, it is a global program, with 35 radar sites around the globe, managed by sixteen institutes in ten countries. The SuperDARN radar outside provides valuable data over central Canada that promotes understanding of ionosphere processes and phenomena.

Researchers are looking forward to the radar contributing to the upcoming solar maximum during the new solar cycle that just started in early September.

Space Weather

“Extreme solar storms pose a threat to all forms of high-technology,” said Dr. J. Michael Ruohoniemi Associate Professor, Bradley Department of Computer and Electrical Engineering, Virginia Tech (Virginia Polytechnic Institute and State University).

He is the ‘Principle Investigator’ for the Kapusakasing (Kap) radar station as well as Goose Bay, and some others in the U.S.

“They begin with an explosion, a “solar flare”—in the magnetic canopy of a sunspot. X-rays and extreme UV radiation reach Earth at light speed, ionizing the upper layers of our atmosphere; side effects include radio blackouts and GPS navigation errors.”

Minutes to hours later, the energetic particles arrive, moving only slightly slower than light itself. Electrons and protons accelerated by the blast can electrify satellites and damage their electronics.

SuperDARN is a large international collaboration and the operation of the radar in Kapuskasing is funded by the U.S. National Science Foundation (NSF) through an award to Virginia Tech. A large group at the University of Saskatchewan operates five radars including three in the high arctic (‘PolarDARN’).

“Kap was built in 1993 and the site was selected because it has a good geometry with the radar at Saskatoon,” Ruohiniemi. “This means the fields-of-view of the two radars overlap substantially, making it possible to observe the same volume from two directions which is useful if you are trying to measure velocity. We also selected Kap because it is a substantial town with good facilities.”

He also has a personal connection to the town. “My father was born there and I visited my grandparents often as a kid and teenager. When we were looking at potential sites in northern Ontario I thought of the Experimental farm. We wound up going to the other side of town but it was a good start.”

Concern and Awareness

“Definitely the public should know about the potential dangers,” said Ruohoniemi. “The largest source of error on GPS measurements, for example, is space weather in the ionosphere. If GPS is being used to land aircraft this is a serious concern. “

There was a spectacular occurrence in 1859, known as the Carrington event, that interrupted telegraph systems.

“If we had an event of that magnitude again everyone would be aware of the damage to all the electrical systems in use today. The threat is cyclical with the 11-year sunspot cycle with more intense storms happening at the peak and declining phases. There was a near-miss due to a solar superstorm in 2012 – a really big flare went off but just missed Earth. We are in a quiet phase right now. I don’t want to sound alarmist, but yes, we should be paying attention to the danger posed by solar storms.”

The NOAA Space Weather Prediction Center issues a continuous forecast of the weather in Earth’s near-space environment. Solar flares cause impacts that can make the evening news such as the severe geomagnetic storm in 1989; an aurora was seen as far south as Texas and knocked out the Quebec power grid.

“By combining the data from all the radars we get an image of plasma flows in the ionosphere (above 100 km altitude) that looks a lot like a typical weather map with atmospheric winds,” Ruohoniemi said. “The radars, in effect, see something like a radio wave version of the visual aurora and we can use the Doppler shift on the signal coming back to estimate plasma flow velocity.”

How it Works

“Village Media readers may be familiar with Ham radio, people who have a tall antenna by their house and a little room crammed with equipment to send and receive High Frequency (HF) radio signal. Because this signal bounces off the ionosphere at heights of 100-300 km, it can be received by other Hams a great distance away. The ionosphere is highly variable because of solar storms and sometimes the Hams can make amazing connections with people on the other side of the world but can’t connect to each other a few hundred kilometres apart. Our radar works basically like a Ham radio except that we have many antennas (16) and we are interested in how the signal bounces off the ionosphere and what that tells us about the space environment, not in communicating with other people (although we could). Not very much power is required and the radars operate continuously under computer control with connections to research labs in Canada, the U.S., and other countries.”

SuperDARN has shown how the circulation of plasma in the ionosphere (‘plasma winds’) at high latitudes is tightly controlled by the solar wind. The plasma consists of ions and electrons and can move at speeds greater than 1 km per second, so these winds are incredibly fast compared to the wind that blows in the atmosphere at ground level. “When viewed from well above the North Pole, you can see the winds forming giant cells of circulation similar to atmospheric winds. When the solar wind changes, especially when its magnetic field reverses direction, the pattern of circulation can flip in a matter of minutes. By combining data from multiple SuperDARN radars we are able to image these changes as they happen and to study the physics of the sun-earth connection, which is the basis for space weather.”

The back roads hold a lot of oddities.

This bank of radar towers doesn’t appear to be anything special but when the physics behind this space weather interaction is understood it can be seen in a different light. Scientists working on predictive models will one-day forecast space weather much like meteorologists forecast weather on Earth.

Let’s block ads! (Why?)



Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending

Exit mobile version