Connect with us

Science

Scientists Further Cowpea Research, Boost Crop Productivity – Lab Manager Magazine

Published

on


Scientists from the University of Illinois observe traits that can improve yields of cowpea, a staple food crop in sub-Saharan Africa.

RIPE project

Crops grow dense canopies that consist of several layers of leaves—the upper layers with younger sun leaves and the lower layers with older shaded leaves that may have difficulty intercepting sunlight trickling down from the top layers.

In a recent study published in Food and Energy Security, scientists from Realizing Increased Photosynthetic Efficiency (RIPE) aimed to understand how much variation exists within diverse cowpea lines in light absorption and carbon dioxide (CO2) assimilation throughout the canopy. This information can ultimately be used to design more efficient canopies—with greater CO2 assimilation and water-use efficiency—to increase yields.

RIPE, which is led by the University of Illinois, is engineering crops to be more productive by improving photosynthesis, the natural process all plants use to convert light energy to produce biomass and yields. RIPE is supported by the Bill & Melinda Gates Foundation, the US Foundation for Food and Agriculture Research (FFAR), and the UK Government’s Department for International Development (DFID). One of the target crops of the RIPE project is cowpea.

Cowpeas, commonly known as black-eyed peas in the US, are one of the oldest domesticated crops in the world, responsible for feeding more than 200 million people per day.

“They are a staple crop in Africa, providing a source of protein for humans and livestock, and restoration of soil nutrition through nitrogen fixation,” said Lisa Ainsworth, a research plant physiologist with the US Department of Agriculture, Agricultural Research Service (USDA-ARS).

The RIPE team screened 50 cowpea genotypes from a multi-parent advanced generation inter-cross (MAGIC) population for canopy architecture traits, canopy photosynthesis, and water-use efficiency by using a canopy gas exchange chamber. This chamber was used to measure the rate by which plants would convert CO2 in the atmosphere into carbohydrates as energy for growth.

“Since sub-Saharan Africa is the region where important yield gaps persist, it is crucial that we develop a high yielding crop that can be easily grown there,” said first author Anthony Digrado, a USDA-ARS postdoctoral researcher in Ainsworth’s lab based at Illinois. “That is to say that water-use efficiency should be taken into serious account when developing new varieties for sub-Saharan African countries that are challenged by access to water in several regions.”


Related Article: Seed Treatment with Salicylic Acid Helps the Cowpea Deal with Drought


The team used Principal Component Analysis (PCA) models to first group the 50 MAGIC genotypes into five general canopy architectural types to study plant traits, including leaf area index, leaf greenness, and canopy height and width. This analysis gave researchers the ability to gather an overview of the traits, or combinations of traits, that could be modified to have the strongest impact on canopy photosynthesis to maximize growth.

A team collects data from cowpea population at the University of Illinois.

RIPE project

Canopy architecture contributed to 38.6 percent of the variance observed in canopy photosynthesis. Results showed that in canopies with lower biomass, the major limitation to canopy photosynthesis was leaf area; however, in higher biomass canopies, the major limiting factor was, instead, the light environment. Canopies with high biomass have greater canopy photosynthesis when leaves at the top of the canopy have lower chlorophyll content.

Overall, canopy architecture significantly affected canopy photosynthetic efficiency and water-use efficiency, suggesting that optimizing canopy structures can contribute to yield enhancement in crops.

“Water-use efficiency refers to the amount of CO2 assimilated by a crop canopy relative to the amount of water that is lost by the canopy,” said Digrado, who led this work at the Carl R. Woese Institute for Genomic Biology (IGB). “The ideal for a crop is to be able to have a lot of carbon intake without losing too much water.”

The MAGIC cowpea population that the team used matches this criteria for an ideal crop, especially one to be grown in the drought conditions of Africa. However, research on how canopy architecture affects canopy CO2 assimilation and water-use efficiency in cowpea continues to be scarce.

“There is still a lot to do to improve cowpea yields and much more research is needed,” Digrado said. “But this work has established that variation exists that can be used to improve productivity and efficiency of an important food security crop.”

The RIPE project and its sponsors are committed to ensuring Global Access and making the project’s technologies available to the farmers who need them the most.

This press release was originally published on the RIPE website

Let’s block ads! (Why?)



Source link

Continue Reading

Science

BREAKING | 24 new cases of COVID-19 in Niagara – Newstalk 610 CKTB (iHeartRadio)

Published

on


Niagara Region Public Health are reporting 24 new cases of COVID-19 in the region.

This is the highest single day increase of cases since June 3rd, which saw 40 new cases in the region.

Currently, Niagara has 77 active cases of the virus, and five active outbreaks.

To see the full details from Niagara Region Public Health, click here.

Ontario reported 491 new cases today.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

A physicist says new math proves paradox-free time travel is possible – SlashGear

Published

on


Time travel has been the staple science fiction books and movies for many years. Most who have read or watched content focusing on time travel knows about the paradox issue. Perhaps the best example is the 80s classic “Back to the Future,” where Marty accidentally prevents his parents from meeting and has to fix his error before he’s wiped out of existence.

Time travel is something that scientists and physicists have considered for many years. A physics student named Germain Tobar from the University of Queensland in Australia says that he has figured out the math that would make time travel viable without paradoxes. According to Tobar, classical dynamics says if you know the state of the system at a particular time, it can tell you the entire history of the system.

His calculations suggest that space-time may be able to adapt itself to avoid paradoxes. One example is a time traveler who journeys into the past to stop a disease from spreading. If the mission were successful, there would’ve been no disease for the time traveler to go back and try and prevent. Tobar suggests that the disease would still spread in some other way, through different route or method, removing the paradox.

He says whatever the time traveler did, the disease wouldn’t be stopped. Tobar’s work is highly complicated but is essentially looking at deterministic processes on an arbitrary number of regions in the space-time continuum. It’s demonstrating how closed timelike curves, which Einstein predicted, can fit in with the rules of free will and classical physics.

Tobar’s research supervisor is physicist Fabio Costa from the University of Queensland. Costa says that the “maths checks out,” further noting that the results are the stuff of science fiction. The new math suggests that time travelers can do what they want, and paradoxes are not possible. Costa says that events will always adjust themselves to avoid any inconsistency.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

We May Finally Know What Life on Earth Breathed Before There Was Oxygen – ScienceAlert

Published

on


Billions of years ago, long before oxygen was readily available, the notorious poison arsenic could have been the compound that breathed new life into our planet.

In Chile’s Atacama Desert, in a place called Laguna La Brava, scientists have been studying a purple ribbon of photosynthetic microbes living in a hypersaline lake that’s permanently free of oxygen.

“I have been working with microbial mats for about 35 years or so,” says geoscientist Pieter Visscher from the University of Connecticut.

“This is the only system on Earth where I could find a microbial mat that worked absolutely in the absence of oxygen.”

Microbial mats, which fossilise into stromatolites, have been abundant on Earth for at least 3.5 billion years, and yet for the first billion years of their existence, there was no oxygen for photosynthesis.

How these life forms survived in such extreme conditions is still unknown, but examining stromatolites and extremophiles living today, researchers have figured out a handful of possibilities. 

While iron, sulphur, and hydrogen have long been proposed as possible replacements for oxygen, it wasn’t until the discovery of ‘arsenotrophy‘ in California’s hypersaline Searles Lake and Mono Lake that arsenic also became a contender.

Since then, stromatolites from the Tumbiana Formation in Western Australia have revealed that trapping light and arsenic was once a valid mode of photosynthesis in the Precambrian. The same couldn’t be said of iron or sulphur.

Just last year, researchers discovered an abundant life form in the Pacific Ocean that also breathes arsenic. 

Even the La Brava life forms closely resemble a purple sulphur bacterium called Ectothiorhodospira sp., which was recently found in an arsenic-rich lake in Nevada and which appears to photosynthesise by oxidising the compound arsenite into a different form -arsenate.

While more research needs to verify whether the La Brava microbes also metabolise arsenite, initial research found the rushing water surrounding these mats is heavily laden with hydrogen sulphide and arsenic.

If the authors are right and the La Brava microbes are indeed ‘breathing’ arsenic, these life forms would be the first to do so in a permanently and completely oxygen-free microbial mat, similar to what we would expect in Precambrian environments.

As such, its mats are a great model for understanding some of the possible earliest life forms on our planet. 

While genomic research suggests the La Brava mats have the tools to metabolise arsenic and sulphur, the authors say its arsenate reduction appears to be more effective than its sulfate reduction.

Regardless, they say there’s strong evidence that both pathways exist, and these would have been enough to support extensive microbial mats in the early days of life on Earth.

If the team is right, then we might need to expand our search for life forms elsewhere.

“In looking for evidence of life on Mars, [scientists] will be looking at iron and probably they should be looking at arsenic also,” says Visscher.

It really is so much more than just a poison.

The study was published in Communications Earth and Environment

Let’s block ads! (Why?)



Source link

Continue Reading

Trending