adplus-dvertising
Connect with us

Science

Sea levels rising rapidly in southern U.S., study finds

Published

 on

Damage after Hurricane Ian Bonita Springs, Fla., Sept. 29, 2022. (Sean Rayford/Getty Images)

A study published Monday finds sea-level rise along the coast of the southeastern United States has accelerated rapidly since 2010, raising fears that tens of millions of Americans’ homes in cities across the South will be at risk from flooding in the decades to come.

“It’s a window into the future,” Sönke Dangendorf, an assistant professor of river-coastal science and engineering at Tulane University, who co-authored the study that appeared in Nature Communications, told the Washington Post.

That paper and another published last month in the Journal of Climate find that sea levels along the Gulf Coast and the southern Atlantic Coast have risen an average of 1 centimeter per year since 2010. That translates to nearly 5 inches over the last 12 years, and it is about double the rate of average global sea-level rise during the same time period.

The Journal of Climate study found that the hurricanes that have recently hammered the Gulf Coast, including Michael in 2018 and Ian — which was blamed in the deaths of 109 Floridians last year — had a more severe impact because of higher sea levels.

300x250x1

“It turns out that the water level associated with Hurricane Ian was the highest on record due to the combined effect of sea-level rise and storm surge,” Jianjun Yin, a climate scientist at the University of Arizona and the author of the Journal of Climate study, told the Post.

Residents of Houston evacuate their homes after the area was flooded from Hurricane Harvey, Aug. 28, 2017Residents of Houston evacuate their homes after the area was flooded from Hurricane Harvey, Aug. 28, 2017
Residents of Houston evacuate their homes after the area was flooded from Hurricane Harvey, Aug. 28, 2017. (Joe Raedle/Getty Images)

Data from the National Oceanic and Atmospheric Administration (NOAA) show the water level at Lake Pontchartrain, an estuary bordering New Orleans, is eight inches higher than it was in 2006. Other cities threatened by rising oceans in the region include Houston, Miami and Mobile, Ala.

The centimeter-per-year rate is far faster than experts had expected, and it is more in line with projections made for the end of the century, Dagendorf said. High-tide flooding — when the tides bring water onto normally dry land on rain-free days — has more than doubled on the Gulf Coast and Southeast coast since the beginning of this century, according to NOAA. Recent years have seen records for high-tide flooding obliterated. The city of Bay St. Louis, Miss., went from three days of high-tide flooding in 2000 to 22 days in 2020.

A study by scientists with the University of Miami, NOAA, NASA and other institutions, which has not yet undergone peer review, found that the Southeastern sea-level rise accounted for “30%-50% of flood days in 2015-2020.”

“In low-lying coastal regions, an increase of even a few centimeters in the background sea level can break the regional flooding thresholds and lead to coastal inundation,” the study said.

 

728x90x4

Source link

Continue Reading

Science

Behind Galactic Bars: Webb Telescope Unlocks Secrets of Star Formation

Published

 on

 

This image of the barred spiral galaxy NGC 5068 is a composite from two of the James Webb Space Telescope’s instruments, MIRI and NIRCam. Credit: ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

 

<span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

300x250x1
NASA
Established in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is &quot;To discover and expand knowledge for the benefit of humanity.&quot; Its core values are &quot;safety, integrity, teamwork, excellence, and inclusion.&quot; NASA conducts research, develops technology and launches missions to explore and study Earth, the solar system, and the universe beyond. It also works to advance the state of knowledge in a wide range of scientific fields, including Earth and space science, planetary science, astrophysics, and heliophysics, and it collaborates with private companies and international partners to achieve its goals.

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>NASA’s <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

James Webb Space Telescope
The James Webb Space Telescope (JWST or Webb) is an orbiting infrared observatory that will complement and extend the discoveries of the Hubble Space Telescope. It covers longer wavelengths of light, with greatly improved sensitivity, allowing it to see inside dust clouds where stars and planetary systems are forming today as well as looking further back in time to observe the first galaxies that formed in the early universe.

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>James Webb Space Telescope has captured a detailed image of the barred spiral galaxy NGC 5068. Part of a project to record star formation in nearby galaxies, this initiative provides significant insights into various astronomical fields. The telescope’s ability to see through gas and dust, typically hiding star formation processes, offers unique views into this crucial aspect of galactic evolution.

A delicate tracery of dust and bright star clusters threads across this image from the James Webb Space Telescope. The bright tendrils of gas and stars belong to the barred spiral galaxy NGC 5068, whose bright central bar is visible in the upper left of this image – a composite from two of Webb’s instruments. NASA Administrator Bill Nelson revealed the image on June 2 during an event with students at the Copernicus Science Centre in Warsaw, Poland.

 

In this image of the barred spiral galaxy NGC 5068, from the James Webb Space Telescope’s MIRI instrument, the dusty structure of the spiral galaxy and glowing bubbles of gas containing newly-formed star clusters are particularly prominent. Three asteroid trails intrude into this image, represented as tiny blue-green-red dots. Asteroids appear in astronomical images such as these because they are much closer to the telescope than the distant target. As Webb captures several images of the astronomical object, the asteroid moves, so it shows up in a slightly different place in each frame. They are a little more noticeable in images such as this one from MIRI, because many stars are not as bright in mid-infrared wavelengths as they are in near-infrared or visible light, so asteroids are easier to see next to the stars. One trail lies just below the galaxy’s bar, and two more in the bottom-left corner. Credit: ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

 

NGC 5068 lies around 20 million light-years from Earth in the constellation Virgo. This image of the central, bright star-forming regions of the galaxy is part of a campaign to create an astronomical treasure trove, a repository of observations of star formation in nearby galaxies. Previous gems from this collection can be seen here (IC 5332) and here (M74). These observations are particularly valuable to astronomers for two reasons. The first is because star formation underpins so many fields in astronomy, from the physics of the tenuous <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

plasma
Plasma is one of the four fundamental states of matter, along with solid, liquid, and gas. It is an ionized gas consisting of positive ions and free electrons. It was first described by chemist Irving Langmuir in the 1920s.

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>plasma that lies between stars to the evolution of entire galaxies. By observing the formation of stars in nearby galaxies, astronomers hope to kick-start major scientific advances with some of the first available data from Webb.

NGC 5068 Webb NIRCam

This view of the barred spiral galaxy NGC 5068, from the James Webb Space Telescope’s NIRCam instrument, is studded by the galaxy’s massive population of stars, most dense along its bright central bar, along with burning red clouds of gas illuminated by young stars within. This near-infrared image of the galaxy is filled by the enormous gathering of older stars which make up the core of NGC 5068. The keen vision of NIRCam allows astronomers to peer through the galaxy’s gas and dust to closely examine its stars. Dense and bright clouds of dust lie along the path of the spiral arms: These are H II regions, collections of hydrogen gas where new stars are forming. The young, energetic stars ionize the hydrogen around them, creating this glow represented in red. Credit: ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

 

The second reason is that Webb’s observations build on other studies using telescopes including the Hubble Space Telescope and ground-based observatories. Webb collected images of 19 nearby star-forming galaxies which astronomers could then combine with Hubble images of 10,000 star clusters, spectroscopic mapping of 20,000 star-forming emission nebulae from the <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

Very Large Telescope
The Very Large Telescope array (VLT) is a visible and infrared wavelength telescope facility operated by the European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. It is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter and four movable 1.8m diameter Auxiliary Telescopes.

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>Very Large Telescope (VLT), and observations of 12,000 dark, dense molecular clouds identified by the Atacama Large Millimeter/submillimeter Array (ALMA). These observations span the electromagnetic spectrum and give astronomers an unprecedented opportunity to piece together the minutiae of star formation.

With its ability to peer through the gas and dust enshrouding newborn stars, Webb is particularly well-suited to explore the processes governing star formation. Stars and planetary systems are born amongst swirling clouds of gas and dust that are opaque to visible-light observatories like Hubble or the VLT. The keen vision at infrared wavelengths of two of Webb’s instruments — MIRI (Mid-Infrared Instrument) and NIRCam (Near-Infrared Camera) — allowed astronomers to see right through the gargantuan clouds of dust in NGC 5068 and capture the processes of star formation as they happened. This image combines the capabilities of these two instruments, providing a truly unique look at the composition of NGC 5068.

The James Webb Space Telescope stands as the apex of space science observatories worldwide. Tasked with demystifying enigmas within our own solar system, Webb will also extend its gaze beyond, seeking to observe distant worlds orbiting other stars. In addition to this, it aims to delve into the cryptic structures and the origins of our universe, thereby facilitating a deeper understanding of our position within the cosmic expanse. The Webb project is an international endeavor spearheaded by NASA, conducted in close partnership with the <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

European Space Agency
The European Space Agency (ESA) is an intergovernmental organization dedicated to the exploration and study of space. ESA was established in 1975 and has 22 member states, with its headquarters located in Paris, France. ESA is responsible for the development and coordination of Europe’s space activities, including the design, construction, and launch of spacecraft and satellites for scientific research and Earth observation. Some of ESA’s flagship missions have included the Rosetta mission to study a comet, the Gaia mission to create a 3D map of the Milky Way, and the ExoMars mission to search for evidence of past or present life on Mars.

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>European Space Agency (ESA) and the Canadian Space Agency.

 

 

728x90x4

Source link

Continue Reading

Science

New image from the James Webb Space Telescope shows thousands upon thousands of stars in a galaxy 17 million light years away

Published

 on

Every single dot you see is a star. There are thousands upon thousands of stars in this image from the James Webb Space Telescope.ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team
  • The James Webb Space Telescope snapped a new image of a galaxy 17 million light-years away.
  • Thousands upon thousands of stars are visible, many of which are concentrated in the galaxy’s heart.
  • JWST is peering into the hearts of many galaxies to help scientists better understand star formation.

With the power of the James Webb Space Telescope, we can peer into the mysterious hearts of galaxies. And that’s exactly what you’re seeing here, in this new image from Webb of the galaxy NGC 5068.

NGC 5068 is located about 17 million light-years from Earth. For perspective, the Milky Way’s neighborhood of galaxies called the Local Group, is 5 million light-years away. So, this galaxy is beyond what we might consider close.

Each individual dot of white light you can see is a star, per Mashable. NASA said there are thousands upon thousands of stars in this image. And many of them are hanging out at the galaxy’s center, which you can see in the upper left as a bright bar of white light.

Skitched photo showing a red circle pointing to the center of galaxy NGC 5068.Skitched photo showing a red circle pointing to the center of galaxy NGC 5068.
The bright bar in the upper left of the image is where the most stars are concentrated.ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

This region appears so bright because that’s where most of the stars are concentrated. That’s also where all the action is.

300x250x1

James Webb peers into the hearts of many galaxies to uncover their secrets

Most galaxies have an ultra-bright center due to warm dust that’s heated by massive bursts of star formation, according to the Harvard Smithsonian. And it’s this star formation that astronomers are interested in studying more with the help of JWST.

In fact, NGC 5068 is just one in a series of other galaxies Webb is observing for a project to help us better understand star formation. Webb has also taken images of the spiral galaxy IC 5332:

Picture of a spiral galaxy taken from James Webb Space Telescope. The spirals look like spider webs dotted by pink gaseous regions throughout the image.Picture of a spiral galaxy taken from James Webb Space Telescope. The spirals look like spider webs dotted by pink gaseous regions throughout the image.
The James Webb Telescope is peering into the hearts of many galaxies to help astronomers gain a better understanding of star formation, especially in the turbulent environments of galactic cores.ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST and PHANGS-HST Teams

And the heart of galaxy M74, aka the “Phantom Galaxy”:

Blue heart of the Phantom Galaxy seen from the Webb Telescope.Blue heart of the Phantom Galaxy seen from the Webb Telescope.
The James Webb Space Telescope sees objects in infrared wavelengths, which allows it to peer past obstructive light that would otherwise block our ability to see into the hearts of galaxies.ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team./J. Schmidt

The James Webb Space Telescope has the advantage of seeing in the infrared.

Infrared wavelengths are too long for the human eye to detect. But they’re especially important for studying in space because they allow JWST to peer past obstructive visual light that would otherwise block our ability to see into the hearts of galaxies and their bustling environments of star formation.

“By observing the formation of stars in nearby galaxies, astronomers hope to kick-start major scientific advances with some of the first available data from Webb,” NASA said.

 

728x90x4

Source link

Continue Reading

Science

Latest Webb Telescope images gives a look at stars being born in the Virgo constellation

Published

 on

It seems like every few weeks, NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA) drop an impressive image from the James Webb Space Telescope that is both stunning to behold and advances our knowledge of the universe. The latest is of the barred spiral galaxy NGC 5068, called a “barred” galaxy because of the bright central bar you can see in the upper left of the above image. It’s a combination image consisting of infrared shots taken from the telescope’s MIRI (Mid-Infrared Instrument) and NIRCam (Near-Infrared Camera) sensors.

What those sensors captured is a galaxy in the Virgo constellation about 20 million light-years from Earth, and because the JWST can see through the dust and gas that surrounds stars as they’re born, the instrument is particularly suited to producing images that show the process of star formation.

 

Looking at the two individual images that make up the composite reveals different layers of the galaxy. As Gizmodo notes, the image produced by the MIRI sensor provides a view of the galaxy’s structure and the glowing gas bubbles that represent newly formed stars.

300x250x1
ESA/Webb, NASA & CSA, J. Lee and

The second image, taken from the NIRCam, put the focus on a huge swath of stars in the foreground. The composite, meanwhile, shows both the enormous amount of stars in the region as well as the highlights of the stars that have just been “born.”

A delicate tracery of dust and bright star clusters threads across this image from the NASA/ESA/CSA James Webb Space Telescope. This view from Webb’s NIRCam instrument is studded by the galaxy’s massive population of stars, most dense along its bright central bar, along with burning red clouds of gas illuminated by young stars within. These glittering stars belong to the barred spiral galaxy NGC 5068, located around 17 million light-years from Earth in the constellation Virgo. This portrait of NGC 5068 is part of a campaign to create an astronomical treasure trove, a repository of observations of star formation in nearby galaxies. Previous gems from this collection can be seen here and here. These observations are particularly valuable to astronomers for two reasons. The first is because star formation underpins so many fields in astronomy, from the physics of the tenuous plasma that lies between stars to the evolution of entire galaxies. By observing the formation of stars in nearby galaxies, astronomers hope to kick-start major scientific advances with some of the first available data from Webb. The second reason is that Webb’s observations build on other studies using telescopes including the NASA/ESA Hubble Space Telescope and some of the world’s most capable ground-based observatories. Webb collected images of 19 nearby star-forming galaxies which astronomers could then combine with catalogues from Hubble of 10 000 star clusters, spectroscopic mapping of 20 000 star-forming emission nebulae from the Very Large Telescope (VLT), and observations of 12 000 dark, dense molecular clouds identified by the Atacama Large Millimeter/submillimeter Array (ALMA). These observations span the electromagnetic spectrum and give astronomers an unprecedented opportunity to piece together the minutiae of star formation. This near-infrared image of the galaxy is filled by the enormous gathering of older stars which make up the core of NGC 5068. The keen vision of NIRCam allows astronomers to peer through the galaxy’s gas and dust to closely examine its stars. Dense and bright clouds of dust lie along the path of the spiral arms: these are H II regions, collections of hydrogen gas where new stars are forming. The young, energetic stars ionise the hydrogen around them which, when combined with hot dust emission, creates this reddish glow. H II regions form a fascinating target for astronomers, and Webb’s instruments are the perfect tools to examine them, resulting in this image. [Image Description: A close-in image of a spiral galaxy, showing its core and part of a spiral arm. At this distance thousands upon thousands of tiny stars that make up the galaxy can be seen. The stars are most dense in a whitish bar that forms the core, and less dense out from that towards the arm. Bright red gas clouds follow the twist of the galaxy and the spiral arm.] Links NGC 5068 (NIRCam+MIRI Image) NGC 5068 (MIRI Image) Slider Tool (MIRI and NIRCam images) Video: Pan of NGC 5068 Video: Webb's views of NGC 5068 (MIRI and NIRCam images) Video: Zoom into NGC 5068
ESA/Webb, NASA & CSA, J. Lee and

There isn’t one specific breakthrough finding in this image; instead, NASA notes that this is part of a wider effort to collect as many images of star formation from nearby galaxies as it can. (No, 20 million light-years doesn’t exactly feel nearby to me, either, but that’s how things go in space.) NASA pointed to another few images as other “gems” from its collection of star births, including this impressive “Phantom Galaxy” that was shown off last summer. As for what the agency hopes to learn? Simply that star formation “underpins so many fields in astronomy, from the physics of the tenuous plasma that lies between stars to the evolution of entire galaxies.” NASA goes on to say that it hopes the data being gathered of galaxies like NGC 5068 can help to “kick-start” major scientific advances, though what those might be remains a mystery.

 

728x90x4

Source link

Continue Reading

Trending