Connect with us


Space eye: Hubble trouble continues as Webb telescope moves ahead – Al Jazeera English



NASA’s next great eye in the sky, the golden-mirrored James Webb Space Telescope, passed a key review this week, bringing it one step closer to launching in November and observing new parts of the cosmos for scientists here on Earth.

That’s good news for the United States’ space agency, which has spent the last several weeks trying to troubleshoot issues with its current window on the universe, the Hubble Space Telescope.

The storied telescope that has revolutionised our understanding of the cosmos for more than three decades is experiencing a technical glitch. According to NASA, the Hubble Space Telescope’s payload computer, which operates the spacecraft’s scientific instruments, went down suddenly on June 13.

During its more than 30 years in the sky, the Hubble Space Telescope has captured stunning images like this one of the Messier 106 galaxy [File: STScI/AURA, R Gendler via AP]

As a result, the instruments on board meant to snap pictures and collect data are not currently functioning. The agency’s best and brightest have been working diligently to get the ageing telescope back online and have run a barrage of tests but still can’t seem to figure out what went wrong.

“It’s just the difficulty of trying to fix something orbiting 400 miles [653 kilometres] over your head instead of in your laboratory,” Paul Hertz, the director of astrophysics for NASA, told Al Jazeera.

“If this computer were in the lab, it would be really quick to diagnose it,” he explained. “All we can do is send a command, see what data comes out of the computer, and then send that data down and try to analyse it.”

Hubble’s legacy

When Hubble launched on April 24, 1990, scientists were excited to peer into the vast expanse of space with a new set of “eyes”, but they had no idea how much one telescope would change our understanding of the universe.

The telescope has looked into the far reaches of space, spying the most distant galaxy ever observed — one that formed just 400 million years after the big bang.

This image taken with the Hubble Space Telescope  shows a hot, star-popping galaxy that is farther than any previously detected, from a time when the universe was a mere 400 million years old [File: Space Telescope Science Institute via AP]

Hubble has also produced stunning galactic snapshots like the Hubble Ultra Deep Field.

Captured in one single photograph are hundreds of thousands of ancient galaxies that formed long before the Earth even existed — each galaxy a vast and thriving stellar hub, where hundreds of billions of stars were born, lived their lives, and died.

The light from these galaxies has taken billions of years to reach Hubble’s sensors, making it a time machine of sorts – one that takes us on a journey through time to see them as they were billions of years ago.

Hubble has also spied on our cosmic neighbours, discovering some of the moons around Pluto.

Its observations showed us that almost every galaxy has a supermassive back hole at its centre, and Hubble has also helped scientists create a vast three-dimensional map of an elusive, invisible form of matter that accounts for most of the matter in the universe.

Called dark matter, the enigmatic substance can’t be seen. Scientists only know it exists by measuring its effects on ordinary matter. Thanks to Hubble’s suite of scientific instruments, scientists were able to create a 3D map of dark matter.

What went wrong

Scientists have been planning for Hubble’s inevitable demise for quite some time. Over the past 31 years, the telescope has seen its fair share of turmoil.

Shortly after it launched, NASA discovered that something wasn’t quite right: Hubble’s primary mirror was flawed. Fortunately, the problem could be fixed, as the telescope is the only one in NASA’s history that was designed to be serviced by astronauts.

Astronauts Steven L Smith and John M Grunsfeld serviced the Hubble Space Telescope during a December 1999 mission [File: NASA/JSC via AP]

Over its lifetime (and the course of the agency’s shuttle programme), groups of NASA astronauts have repaired and upgraded Hubble and its instruments five different times.

When the space shuttle retired in 2011, it meant that Hubble would be on its own. If the telescope were in trouble, ground controllers would need to troubleshoot remotely.

So far that has proven to be effective. That is, until June 13.

Just after 4pm EDT (20:00 GMT), an issue with the observatory’s payload computer popped up, putting the telescope and its scientific instruments into safe mode.

Hubble has two payload computers on board — the main computer and a backup for redundancy. These computers, called a NASA Standard Spacecraft Computer-1 (or NSSC-1), were installed during one of the telescope’s servicing missions in 2009; however, they were built in the 1980s.

They’re part of the Science Instrument Command and Data Handling (SI C&DH) unit, a module on the Hubble Space Telescope that communicates with the telescope’s science instruments and formats data for transmission to the ground. It also contains four memory modules (one primary and three backups).

The current unit is a replacement that was installed by astronauts on shuttle mission STS-125 in May 2009 after the original unit failed in 2008.

When the main computer went down in June, NASA tried to activate its backup, but both computers are experiencing the same glitch, which suggests the real issue is in another part of the telescope.

Currently, the team is looking at the various components of the SI C&DH, including the power regulator and the data formatting unit. If one of those pieces is the problem, then engineers may have to perform a more complicated series of commands to switch to backups of those parts.

This image made by the NASA/ESA Hubble Space Telescope shows M66, the largest of the Leo Triplet galaxies [File: NASA, ESA/Hubble Collaboration via AP]

NASA says it’s going to take some time to sort out the issue and switch over to the backup systems if necessary. That’s because turning on those backups is a riskier manoeuvre than anything the team has tried so far.

The operations team will need several days to see how the backup computer performs before it can resume normal operations. The backup hasn’t been used since its installation in 2009, but according to NASA, it was “thoroughly tested on the ground prior to installation on the spacecraft”.

Part of the trouble with Hubble is that the observatory was designed to be serviced directly. Without a space shuttle, there’s just no way to do so.

“The biggest difference between past issues and this one is there’s no way to replace parts now,” John Grunsfeld, a former NASA astronaut, told Al Jazeera.

But, he added, “The team working on Hubble are masters of engineering. I”m confident they will succeed.”

Looking to the future

The James Webb Space Telescope, scheduled to launch in November, is expected to expand upon Hubble’s legacy. The massive telescope, essentially a giant piece of space origami, will unfold its shiny golden mirrors and peer even further into the universe than Hubble ever could. Its infrared sensors will let scientists study stellar nurseries, the heart of galaxies and much more.

Hubble has shown us that nearly all galaxies have supermassive black holes at their centres, the brightest of which we call quasars. These incredibly bright objects can tell us a lot about galaxy evolution, as the jets and wind produced by a quasar help to shape its host galaxy.

Previous observations have shown that there is a correlation between the masses of supermassive black holes and the masses of their galaxies, meaning that quasars could help regulate star formation in their host galaxy.

In August 2020, the Hubble Space Telescope captured this image of the planet Jupiter and one of its moons, Europa, at left, when the planet was 653 million kilometres (406 million miles) from Earth [File: NASA/ESA via AP]

“We see black holes at a time when the universe was only 800 million years old that are almost as massive as the biggest we see today, so they evolved extremely early,” Chris Willott of the Canadian Space Agency told Al Jazeera.

“By studying their galaxies, we can see what the impact of such extreme black holes is on the early formation of stars in these galaxies.”

Through Hubble’s eyes, scientists cannot detect individual stars in the galaxies with these ultra-bright quasars, but with Webb, scientists hope they will be able to see not only individual stars, but also the gas from which these stars form.

That means the Webb telescope has the potential to truly revolutionise our understanding of galaxy formation and evolution, the same way that Hubble did for our knowledge of the universe over the past three decades.

Adblock test (Why?)

Source link

Continue Reading


The sun is dying: Here’s how long it has before exhausting its fuel – Firstpost



A new study has estimated the sun’s evolutionary process will continue for billions of more years before it runs out of its fuel and turns into a red giant. It has revealed the past and future of the sun, how the sun will behave at what stage and when it will enter the dusk of its life

This handout photograph released by The European Space Agency (ESA) on July 16, 2020, shows an image of the Sun, roughly halfway between the Earth and the Sun. AFP

The sun is very likely going through its middle age, a recent study published in June this year by the European Space Agency (ESA), based on the observations from its Gaia spacecraft, has revealed.

The ESA’s Gaia telescope has revealed information that could help determine when the sun will die, which was formed around 4.57 billion years ago.

The study has estimated the sun’s evolutionary process to continue for billions of more years before it runs out of its fuel and turns into a red giant. The study has revealed the past and future of the sun, how the sun will behave at what stage and when it will enter the dusk of its life.

What has the ESA study revealed?

According to the report made public on 13 June, 2022, at the age of around 4.57 billion years, our sun is currently in its ”comfortable middle age, fusing hydrogen into helium and generally being rather stable; staid even”.

However, it will not be the case forever. The sun will eventually die. The information by ESA’s Gaia observatory has also revealed the process of its decay.

The sun is dying Heres how long it has before exhausting its fuel

Stellar evolution. ESA

“As the hydrogen fuel runs out in its core, and changes begin in the fusion process, we expect it to swell into a red giant star, lowering its surface temperature in the process.”

Exactly how this happens depends on how much mass a star contains and its chemical composition.

To deduce this, astronomer Orlagh Creevey, Observatoire de la Côte d’Azur, France, and collaborators from Gaia’s Coordination Unit 8, and colleagues combed the data looking for the most accurate stellar observations that the spacecraft could offer.

“We wanted to have a really pure sample of stars with high precision measurements,” says Orlagh.

When will the sun die?

The study found that the sun will reach a maximum temperature of approximately 8 billion years of age, before starting to cool down and increase in size.

“It will become a red giant star around 10–11 billion years of age. The Sun will reach the end of its life after this phase, when it eventually becomes a dim white dwarf.”

A white dwarf is a former star that has exhausted all its hydrogen that it once used as it central nuclear fuel and lost its outer layers as a planetary nebula.

“If we don’t understand our own Sun – and there are many things we don’t know about it – how can we expect to understand all of the other stars that make up our wonderful galaxy,” Orlagh said.

By identifying similar stars to the sun, but this time with similar ages, the observational gap can be bridged in how much we know about the sun compared to other stars in the universe.

To identify these ‘solar analogues’ in the Gaia data, Orlagh and colleagues looked for stars with temperatures, surface gravities, compositions, masses and radii that are all similar to the present-day Sun. They found 5863 stars that matched their criteria.

With inputs from agencies

Read all the Latest News, Trending NewsCricket News, Bollywood News,
India News and Entertainment News here. Follow us on Facebook, Twitter and Instagram.

Adblock test (Why?)

Source link

Continue Reading


SLS ready to roll to LC-39B for launch, teams prepare for multiple launch trajectories – –



NASA’s Space Launch System (SLS) rocket has completed all pre-launch preparations inside the Vehicle Assembly Building at the Kennedy Space Center in Florida and is ready for its 4.2-mile (6.7-km) journey to Launch Complex 39B.

The multi-hour rollout process is currently set to begin at 9 PM EDT on Tuesday, August 16 (01:00 UTC on Wednesday, August 17), weather permitting – which should result in a sunrise arrival at the pad.

The rollout is the last major milestone ahead of launch, which will differ from most recent missions in that the rocket’s needed azimuth — or flight path — will continuously change through each day’s launch window.

Launching to the Moon

Launching into a rendezvous orbit with a satellite or station in low Earth orbit can be relatively simplified as needing to launch directly into the plane – and therefore the same orbital inclination – of the target’s orbit.

For example, when launching to the International Space Station from Florida, the azimuth the rocket follows is 44.98°. This does not change based on when within the daily window liftoff occurs.

However, the same is not true when trying to launch into an intercept trajectory with the Moon.

[embedded content]

As related by Artemis 1 Ascent/Entry Flight Director Judd Frieling to NASASpaceflight during Artemis Day events in Mission Control at the Johnson Space Center, the Moon’s motion in its orbit coupled with its constantly-changing relative inclination to the launch site complicates the needed launch azimuth for SLS.

On each launch day, the azimuth SLS must fly moves incrementally, second-by-second, throughout the window to match the movement of the Moon relative to the Earth for the translunar injection (TLI) burn.

According to NASA, for SLS and Artemis 1, the azimuth at the opening of the window on all three launch attempts on August 29, September 2, and September 5 is 62°, resulting in a 38° inclination orbit.

At the end of each window, the azimuth flown would be 108° into a 32° inclination orbit.

But before SLS can be readied for its roll onto course on launch day, it must first arrive at the pad.

Rolling out for launch

The Artemis 1 launch rollout will mark the first time since May 31, 2011, that a vehicle will emerge from the Vehicle Assembly Building (VAB) at the Kennedy Space Center for launch operations.

SLS and Orion at LC-39B during preparations for the WDR (Credit: Julia Bergeron for NSF/L2)

As it has twice already for its wet dress rehearsal campaigns, the SLS rocket for Artemis 1 will make the journey to LC-39B atop crawler-transporter 2, one of two crawler-transporters owned by NASA and the only one modified to carry the full stack Artemis/SLS vehicle to the pad.

The upgrades were necessary due to the crawler’s age and the increased mass of the SLS vehicle with its combined Mobile Launcher (ML).

The combined SLS/ML weight is approximately 15 million pounds (6.8 million kg) and is significantly heavier than the previous record holder in the Space Shuttle at 12 million pounds (5.4 million kg).

Upgrades included a rating to handle 18 million pounds (8.1 million kg), a 50% greater load than was originally envisioned, as well as a new 1,500-kilowatt electrical power generator, parking and service brakes, redesigned and upgraded roller bearings, and several other modifications for the Artemis program.

Like the crawlers, their purpose-built road, the crawlerway, also underwent upgrades between Shuttle and SLS.

Beginning in 2013, the crawlerway’s foundations were repaired with new lime rock to return them to their original condition and ready them for the Block 1B SLS, presently scheduled for later this decade, which will be heavier than the Block 1 SLS used for Artemis 1.

The 15 million pound SLS and ML on LC-39B during Wet Dress Rehearsal. (Credit: Nathan Barker for NSF)

Additionally, 30,000 tons of new Alabama river rock were added to return the crawlerway to its optimal depth.

For Launch Complex 39B, which was used for Apollo, Skylab, Apollo-Soyuz, Space Shuttle, and Ares I-X missions, the pad was slowly modified in stages, beginning in the final years of the Shuttle program, into a clean pad configuration with three, 600-foot (183 m) lightning towers connected with catenary wires.

The clean pad is without the Shuttle-era fixed and rotating service structures that serviced the Shuttle stack.

The sound suppression system, flame trench, cabling, and other systems were also upgraded during the transition to SLS. Work on Pad 39B has also included a new 1.25 million gallon liquid hydrogen tank, though this is not yet complete and will not be used for Artemis 1.

Pad 39B’s clean pad configuration was designed to be able to handle different types of rockets as part of a multi-user spaceport emphasis. To date, only Northrop Grumman expressed interest in the pad share for their now-canceled OmegA rocket.

Artemis 1

Artemis 1 is scheduled to spend 13 days at Pad 39B after the August 16 rollout. During this time, the ML will be hooked up to the plumbing servicing the rocket with liquid oxygen, liquid hydrogen, helium, and liquid nitrogen.

Crawler-Transporter-2 (CT-2) during rollout testing. (Credit: NASA)

Other round systems required for the launch will also be activated while teams conduct system checks on the SLS and Orion. Should all go well, the stage will be set for the 60th overall launch — and the second flight to the Moon after Apollo 10 — from Pad 39B.

The Artemis 1 countdown is currently scheduled to begin with Call To Stations at 9:53 AM EDT (13:53 UTC) on August 27. Fueling would begin early in the morning of August 29 for a two-hour launch window opening at 8:33 AM EDT (12:33 UTC).

Overall, Artemis 1 has 25 days to launch after the flight termination system (FTS) testing on the launch vehicle was completed on August 12.

Should Artemis 1 not be able to launch on August 29, launch windows for September 2 and 5 are available.

The two-hour September 2 launch window starts at 12:48 PM EDT (16:48 UTC) while the September 5 window lasts for 90 minutes, starting at 5:12 PM EDT (21:12 UTC).

Should Artemis 1 not be able to make any of the launch windows, crawler-transporter 2 would return to Pad 39B to roll the stack back to the VAB for FTS replacement and any other work the vehicle or ML might need before the next available launch window, most likely October 17 through 31.

Together, the first two SLS/Orion Artemis missions will pave the way for the first human lunar landing since 1972 on Artemis 3, currently scheduled for no earlier than late 2025.

Artemis 3 will use the SLS and Orion to ferry astronauts to lunar orbit, where a waiting SpaceX Starship lander procured under the HLS contract will transport them to and from the surface near the Moon’s south pole.

Just under 50 years after humanity last left the Moon in December 1972, Artemis 1 stands ready to begin our return journey. This time, to stay.

(Lead photo: SLS basking in the morning sun at LC-39B. Credit: Stephen Marr for NSF)

Adblock test (Why?)

Source link

Continue Reading


Identifying a new, cleaner source for white light –



<div data-thumb="" data-src="" data-sub-html="Upon irradiation by infrared light, adamantane-based molecular clusters with the general composition [(RT)4E5] (with R = organic group; T = C, Si, Ge, Sn; E = O, S, Se, Te, NH, CH2, ON•) emit highly directional white light. Credit: Elisa Monte, Justus-Liebig-Universität Gießen”>

<img src="" alt="HPC helps identify new, cleaner source for white light" title="Upon irradiation by infrared light, adamantane-based molecular clusters with the general composition [(RT)4E5] (with R = organic group; T = C, Si, Ge, Sn; E = O, S, Se, Te, NH, CH2, ON•) emit highly directional white light. Credit: Elisa Monte, Justus-Liebig-Universität Gießen” width=”800″ height=”530″>
Upon irradiation by infrared light, adamantane-based molecular clusters with the general composition [(RT)4E5] (with R = organic group; T = C, Si, Ge, Sn; E = O, S, Se, Te, NH, CH2, ON•) emit highly directional white light. Credit: Elisa Monte, Justus-Liebig-Universität Gießen

When early humans discovered how to harness fire, they were able to push back against the nightly darkness that enveloped them. With the invention and widespread adoption of electricity, it became easier to separate heat from light, work through the night, and illuminate train cars to highways. In recent years, old forms of electric light generation such as halogen lightbulbs have given way to more energy efficient alternatives, further cheapening the costs to brighten our homes, workplaces, and lives generally.

Unfortunately, however, white light generation by newer technologies such as (LEDs) is not straightforward and often relies on a category of materials called “rare-earth metals,” which are increasingly scarce. This has recently led scientists to look for ways to produce white light more sustainably. Researchers at Giessen University, the University of Marburg, and Karlsruhe Institute of Technology have recently uncovered a new class of material called a “cluster glass” that shows great potential for replacing LEDs in many applications.

“We are witnessing the birth of white-light generation technology that can replace current light sources. It brings all the requirements that our society asks for: availability of resources, sustainability, biocompatibility,” said Prof. Dr. Simone Sanna, Giessen University Professor and lead computational researcher on the project.

“My colleagues from the experimental sciences, who observed this unexpected white light generation, asked for theoretical support. Cluster glass has an incredible optical response, but we don’t understand why. Computational methods can help to understand those mechanisms. This is exactly the challenge that theoreticians want to face.”

Sanna and his collaborators have turned to the power of (HPC), using the Hawk supercomputer at the High-Performance Computing Center Stuttgart (HLRS) to better understand cluster glass and how it might serve as a next-generation light source. They published their findings in Advanced Materials.

Clear-eyed view on cluster glass formation

If you are not a materials scientist or chemist, the word glass might just mean the clear, in your windows or on your dinner table. Glass is actually a class of materials that are considered “amorphous solids;” that is, they lack an ordered crystalline lattice, often due to a rapid cooling process. At the , their constituent particles are in a suspended, disordered state. Unlike crystal materials, where particles are orderly and symmetrical across a long molecular distance, glasses’ disorder at the molecular level make them great for bending, fragmenting, or reflecting light.

Experimentalists from the University of Marburg recently synthesized a particular of glass called a “cluster glass.” Unlike a traditional glass that almost behaves as a liquid frozen in place, cluster glass, as the name implies, is a collection of separate clusters of molecules that behave as a powder at room temperature. They generate bright, clear, white light upon irradiation by infrared radiation. While powders cannot easily be used to manufacture small, sensitive electronic components, the researchers found a way to re-cast them in glass form: “When we melt the powder, we obtain a material that has all the characteristics of a glass and can be put in any form needed for a specific application,” Sanna said.

Structural modifications of the the molecular clusters that lead to the formation of amorphous compounds can be induced by electron or laser irradiation. Credit: Elisa Monte, Justus-Liebig-Universität Gießen

While experimentalists were able to synthesize the material and observe its luminous properties, the group turned to Sanna and HPC to better understand how cluster glass behaves the way it does. Sanna pointed out that generation isn’t a property of a single molecule in a system, but the collective behaviors of a group of molecules. Charting these molecules’ interactions with one another and with their environment in a simulation therefore means that researchers must both capture the large-scale behaviors of light generation and also observe how small-scale atomic interactions influence the system. Any of these factors would be computationally challenging. Modeling these processes at multiple scales, however, is only possible using leading HPC resources like Hawk.

Collaboration between experimentalists and theoreticians has become increasingly important in , as synthesizing many iterations of a similar material can be slow and expensive. High-performance computing, Sanna indicated, makes it much faster to identify and test materials with novel optical properties. “The relationship between theory and experiment is a continuous loop. We can predict the optical properties of a material that was synthesized by our chemist colleagues, and use these calculations to verify and better understand the material’s properties,” Sanna said. “We can also design new materials on a computer, providing information that chemists can use to focus on synthesizing compounds that have the highest likelihood of being useful. In this way, our models inspire the synthetization of new compounds with tailored optical properties”

In the case of cluster glass, this approach resulted in an experiment that was verified by simulation, with modeling helping to show the researchers the link between the observed optical properties and the molecular structure of their cluster glass material and can now move forward as a candidate to replace light sources heavily reliant on rare-earth metals.

HPC expedites R&D timelines

HPC plays a major role in helping researchers accelerate the timeline between new discovery and new product or technology. Sanna explained that HPC drastically cut down on the time to get a better understanding of cluster glass. “We spend a lot of time doing simulation, but it is much less than characterizing these materials in reality,” he said. “The clusters we model have a diamond-shaped core with 4 ligands (molecular chains) attached to it. Those ligands can be made of any number of things, so doing this in an experiment is time consuming.”

Sanna pointed out that the team is still limited by how long they can perform individual runs for their simulations. Many research projects on supercomputers can divide a complex system into many small parts and run calculations for each part in parallel. Sanna’s team needs to pay special attention to long-distance particle interactions across large systems, so they are limited by how much they can divide their simulation across computer nodes. He indicated that having regular access to longer run times—more than a day straight on a supercomputer—would allow the team to work more quickly.

In ongoing studies of cluster glass Sanna’s team hopes to thoroughly understand the origin of its light generating properties. This could help to identify additional new materials and to determine how best to apply cluster in light generation.

Sanna explained that HPC resources at HLRS were essential for his team’s basic science research, which he hopes will lead to new products that can benefit society. “The main computational achievement in this journal article was only possible through our access to the machine in Stuttgart,” he said.

Explore further

New glass-ceramic emits light when under mechanical stress

More information:
Irán Rojas‐León et al, Cluster‐Glass for Low‐Cost White‐Light Emission, Advanced Materials (2022). DOI: 10.1002/adma.202203351

Provided by
High-Performance Computing Center Stuttgart

Identifying a new, cleaner source for white light (2022, August 16)
retrieved 16 August 2022

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Adblock test (Why?)

Source link

Continue Reading