Connect with us

Science

Spacecraft discovers 'hidden water' in Mars Grand Canyon – CNET

Published

 on


This digital terrain model of Valles Marineris on Mars is in near-true color. 


ESA/DLR/FU Berlin (G. Neukum)

This story is part of Welcome to Mars, our series exploring the red planet.

Who’s up for an adventure? You just need to catch a crewed spacecraft to Mars, land near a massive canyon there and go in search of hidden water. The ExoMars Trace Gas Orbiter (TGO) spacecraft has found evidence of “significant amounts of water” in the Valles Marineris canyon system on the red planet.

TGO is operated by the European Space Agency and Russian space agency Roscosmos. The orbiter has an instrument on board that maps hydrogen in the upper layer of Martian soil. Data shows an unusual amount of hydrogen in Candor Chaos, a central region of Valles Marineris, indicating that as much as 40% of the near-surface material in that area could be water.

“With TGO we can look down to one meter below this dusty layer and see what’s really going on below Mars’ surface — and, crucially, locate water-rich ‘oases’ that couldn’t be detected with previous instruments,” Igor Mitrofanov of the Space Research Institute of the Russian Academy of Sciences said in an ESA statement on Wednesday. Mitrofanov is lead author of a study on the water findings published in the journal Icarus.

Valles Marineris is so massive, NASA has called it “the Grand Canyon of Mars.” Except it’s much, much bigger than the US landmark. The Mars version stretches over 1,860 miles (3,000 kilometers) in length and reaches down as far as 5 miles (8 kilometers). 

The water found in Valles Marineris might be tied up with minerals, but the researchers say it’s more likely to be in the form of ice. That leads to questions about how the water ice is preserved in an area of Mars where it would be expected to evaporate. “This suggests that some special, as-yet-unclear mix of conditions must be present in Valles Marineris to preserve the water — or that it is somehow being replenished,” ESA said.

Scientists have been working to tease out both the history and the present existence of water on Mars, investigating what might be hidden lakes (or might just be frozen clay) and mapping out water ice that could be accessed by future human explorers. Locating and exploiting local water resources would be key to any ambitions of colonizing Mars.

“Knowing more about how and where water exists on present-day Mars is essential to understand what happened to Mars’ once-abundant water, and helps our search for habitable environments, possible signs of past life, and organic materials from Mars’ earliest days,” said ExoMars Trace Gas Orbiter project scientist Colin Wilson. 

According to NASA, Valles Marineris is the largest known canyon in the solar system and it would stretch from New York to California if it were located on Earth. If space tourism ever reaches the red planet, the canyon system would be a sightseeing delight. Throw an abundance of water into the equation, and we might be looking at humanity’s future home away from home on Mars.

Adblock test (Why?)



Source link

Continue Reading

Science

Consistent Asteroid Collisions Rock Previous Thinking on Mars Impact Craters – SciTechDaily

Published

 on


This image provides a perspective view of a triple crater in the ancient Martian highlands. Credit: ESA/DLR/FU Berlin

New Curtin University research has confirmed the frequency of asteroid collisions that formed impact craters on <span aria-describedby="tt" class="glossaryLink" data-cmtooltip="

Mars
Mars is the second smallest planet in our solar system and the fourth planet from the sun. Iron oxide is prevalent in Mars’ surface resulting in its reddish color and its nickname "The Red Planet." Mars’ name comes from the Roman god of war.

“>Mars has been consistent over the past 600 million years.

New Curtin University research has confirmed the frequency of asteroid collisions that formed impact craters on Mars has been consistent over the past 600 million years.

The study, published in Earth and Planetary Science Letters, analyzed the formation of more than 500 large Martian craters using a crater detection algorithm previously developed at Curtin, which automatically counts the visible impact craters from a high-resolution image.

Despite previous studies suggesting spikes in the frequency of asteroid collisions, lead researcher Dr. Anthony Lagain, from Curtin’s School of Earth and Planetary Sciences, said his research had found they did not vary much at all for many millions of years.

Impact Craters on Mars

One of the 521 large craters that has been dated in the study. The formation age of this 40km crater has been estimated using the number of small craters accumulated around it since the impact occurred. A portion of these small craters are shown on the right panel and all of them have been detected using the algorithm. In total, more than 1.2 million craters were used to date the Martian craters. Credit: Curtin University

Dr. Lagain said counting impact craters on a planetary surface was the only way to accurately date geological events, such as canyons, rivers, and volcanoes, and to predict when, and how big, future collisions would be.

“On Earth, the erosion of plate tectonics erases the history of our planet. Studying planetary bodies of our Solar System that still conserve their early geological history, such as Mars, helps us to understand the evolution of our planet,” Dr. Lagain said.

“The crater detection algorithm provides us with a thorough understanding of the formation of impact craters including their size and quantity, and the timing and frequency of the asteroid collisions that made them.”

Past studies had suggested that there was a spike in the timing and frequency of asteroid collisions due to the production of debris, Dr. Lagain said.

“When big bodies smash into each other, they break into pieces or debris, which is thought to have an effect on the creation of impact craters,” Dr. Lagain said.

“Our study shows it is unlikely that debris resulted in any changes to the formation of impact craters on planetary surfaces.”

Co-author and leader of the team that created the algorithm, Professor Gretchen Benedix, said the algorithm could also be adapted to work on other planetary surfaces, including the Moon.

“The formation of thousands of lunar craters can now be dated automatically, and their formation frequency analyzed at a higher resolution to investigate their evolution,” Professor Benedix said.

“This will provide us with valuable information that could have future practical applications in nature preservation and agriculture, such as the detection of bushfires and classifying land use.”

Reference: “Has the impact flux of small and large asteroids varied through time on Mars, the Earth and the Moon?” by Anthony Lagain, Mikhail Kreslavsky, David Baratoux, Yebo Liu, Hadrien Devillepoix, Philip Bland, Gretchen K. Benedix, Luc S. Doucet and Konstantinos Servis, 7 January 2022, Earth and Planetary Science Letters.
DOI: 10.1016/j.epsl.2021.117362

Adblock test (Why?)



Source link

Continue Reading

Science

B.C. researchers uncover mechanism that keeps large whales from drowning while feeding on krill – CTV News Vancouver

Published

 on


Vancouver –

New research from the University of British Columbia is shedding light on the ways that whales feed underwater without flooding their airways with seawater.

The research, published this month in Current Biology, shows that lunge-feeding whales – the type that lunge and gulp at large schools of krill – have a special mechanism in the back of their mouths that stops water from entering their lungs when eating.

“It’s kind of like when a human’s uvula moves backwards to block our nasal passages, and our windpipe closes up while swallowing food,” says lead author Dr. Kelsey Gil, a postdoctoral researcher in the department of zoology, in a statement.

Specifically, a fleshy bulb acts as a plug, to close off upper airways, while a larynx closes to block lower airways.

The humpback whale and the blue whale are both lunge-feeders, but the scientists’ research focused on fin whales, thanks in part to being able to travel to Iceland in 2018 and examine carcass remains at a commercial whaling station.

“We haven’t seen this protective mechanism in any other animals, or in the literature. A lot of our knowledge about whales and dolphins comes from toothed whales, which have completely separated respiratory tracts, so similar assumptions have been made about lunge-feeding whales,” Gil said.

Lunge-feeders are impressive, Gil said, because sometimes the amount of food and water they consume is larger than their bodies. After snapping at krill, and while blocking the water from their airways, the whales then drain the ocean water through their baleen, leaving behind the tasty fish.

The study’s senior author Dr. Robert Shadwick, a professor in the UBC department of zoology, says the efficiency of the whales’ feeding is a key factor in their evolution.

“Bulk filter-feeding on krill swarms is highly efficient and the only way to provide the massive amount of energy needed to support such a large body size. This would not be possible without the special anatomical features we have described,” he said in a statement. 

Adblock test (Why?)



Source link

Continue Reading

Science

Study confirmed the frequency of asteroid collisions that formed Mars craters – Tech Explorist

Published

 on


Mapping and counting impact craters are the most commonly used technique to derive detailed insights on geological events and processes shaping the surface of terrestrial planets. Scientists from Curtin University have used a crater detection algorithm to analyze the formation of more than 500 large Martian craters.

The algorithm they used automatically counts the visible impact craters from a high-resolution image. Scientists found that the frequency of asteroid collisions that formed Mars craters has been consistent for over 600 million years.

Lead scientist Dr. Anthony Lagain from Curtin’s School of Earth and Planetary Sciences said, “Despite previous studies suggesting spikes in the frequency of asteroid collisions, this research had found they did not vary much at all for many millions of years.”

“Counting impact craters on a planetary surface was the only way to accurately date geological events, such as canyons, rivers, and volcanoes, and to predict when, and how big, future collisions would be.”

“On Earth, the erosion of plate tectonics erases the history of our planet. Studying planetary bodies of our Solar System that still conserve their early geological history, such as Mars, helps us to understand the evolution of our planet.”

“The crater detection algorithm provides us with a thorough understanding of the formation of impact craters, including their size and quantity, and the timing and frequency of the asteroid collisions that made them.”

“Past studies had suggested that there was a spike in the timing and frequency of asteroid collisions due to the production of debris.”

“When big bodies smash into each other, they break into pieces of debris, which is thought to affect the creation of impact craters.”

“Our study shows it is unlikely that debris resulted in any changes to the formation of impact craters on planetary surfaces.”

Co-author and leader of the team that created the algorithm, Professor Gretchen Benedix, said“the algorithm could also be adapted to work on other planetary surfaces, including the Moon.”

“The formation of thousands of lunar craters can now be dated automatically, and their formation frequency analyzed at a higher resolution to investigate their evolution.”

“This will provide us with valuable information that could have future practical applications in nature preservation and agriculture, such as the detection of bushfires and classifying land use.”

Journal Reference:

  1. Anthony Lagain et al. Has the impact flux of small and large asteroids varied through time on Mars, the Earth, and the Moon? DOI: 10.1016/j.epsl.2021.117362

Adblock test (Why?)



Source link

Continue Reading

Trending